Supporting Information

β-Cyclodextrin-functionalized graphene and metal-organic framework composites for ultrasensitive electrochemical detection of chloramphenicol

Haotian Du¹, Tengyue Yin¹, Guifen Jie*

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.

Table of Contents

Experimental section	S2
Results and discussion	·S2
References	··S3

Experimental section

*Corresponding author.

*E-mail address: guifenjie@126.com.

¹These two authors contributed equally to this work.

Chemicals and Reagents

All chemicals were of at least analytical grade and used without further purification. 1,3,5-Benzenetricarboxylic acid (BTC) was purchased from Sinopharm Chemical Reagent Co. Copper(II) nitrate trihydrate and Graphene were purchased from Anaiji Chemical Reagent Co., Ltd. β -Cyclodextrin was purchased from Tianjin BASF Chemical Co., Ltd. Chloramphenicol was purchased from Aladdin Reagent Shanghai Co., Ltd. Ethanol absolute was purchased from Beijing Balinwei Technology Co., Ltd. All reagents were of analytical grade and used as received. Ultrapure water from a Millipore water purification system (\geq 18 M Ω , Milli-Q, Millipore) was used throughout the experiment.

Apparatus

Transmission electron micrograph (TEM) image was acquired using a JEM-2100 instrument (JEOL, Japan). Scanning electron microscopy (SEM) image was acquired using a S-4800 instrument (Hitachi, Japan) with the voltage of 20 kV. Electrochemistry and ECL measurements were obtained on a CHI 660E electrochemical workstation(Shanghai Chenhua Instruments, China). X-ray photoelectron spectroscopy (XPS) was obtained on Multifunctional imaging electron spectrometer (Thermo ESCALAB 250Xi). X-ray diffraction (XRD) analysis was performed with Cu Kα radiation on a D/Max 2500V/PC Rigaku diffractometer.

Results and discussion

Fig. S1 (A) The peak current of 10 μ M chloramphenicol in PBS at different pH; (B) The peak current of 10 μ M chloramphenicol on the modified electrode with β -CD@G/Cu-BTC composites at different concentration.

Sample number	Added (μ mol L ⁻¹)	Found (μ mol L ⁻¹)	Recovery (%)	RSD (%, n=3)
1	0.02	0.0193	96.5	3.22
2	0.05	0.0477	95.4	1.25
3	0.2	0.21	105.0	1.71
4	2.0	2.12	106.0	2.88
5	5.0	5.04	100.8	1.2
6	8.0	8.16	102.0	1.5

Table S2. Comparison of different electrochemical sensors for CAP determination

Electrode	Linear range	Detection limit	Mathad	Reference
Electrode	$(mol L^{-1})$	(mol L ⁻¹)	Method	
MWCNT/NS/MIP	1,10-6,1,10-2	1.0.10-6	matched potential	01
/RTIL/CPE	1×10°-1×10 ²	1.0×10 °	method	51
Gold electrode	2.5×10 ⁻⁶ -7.4×10 ⁻⁶ 1.0×	1.0×10-6	CV and square wave	S2
		1.0×10 °	voltammetry	
Au/N-G/GCE	2×10 ⁻⁶ -8×10 ⁻⁵	5.9×10-7	CV and linear sweep	S3
			voltammetry	
SPAN-MoS ₂ /CPE	1×10 ⁻⁵ -1×10 ⁻³	6.5×10 ⁻⁸	6.5×10 ⁻⁸ DPV	S4
	1×10 ⁻⁷ -1×10 ⁻⁵			
MoS ₂ /PANI/CPE	1×10 ⁻⁷ -1×10 ⁻⁴	6.9 × 10 ⁻⁸	DPV	S5
β-B-CD-G/Cu-	1~10-8 1~10-5	2.1×10^{-9}	DBV	This
TCPP/GCE	1×10°-1×10°	3.1×10^{-9}	Drv	THIS WOFK

References

- (S1) T. Alizadeh, M. R. Ganjali, M. Zare, P. Norouzi, Food Chem., 2012, 130, 1108-1114.
- (S2) S. Pilehvar, D. Jambrec, M. Gebala, W. Schuhmann and K. D.Wael, Electroanalysis., 2015, 27, 1836-1841.

- (S3) J. Borowiec, R. Wang, L. H. Zhu and J. D. Zhang, Electrochimica Acta., 2013, 99, 138-144.
- (S4) R. R. Yang, J. L. Zhao, M. J. Chen, T. Yang, S. Z. Luo, K. Luo and K. Jiao, Talanta., 2015, 131, 619-623.
- (S5) T. Yang, H. Y. Chen, T. Ge, J. Wang, W. H. Li and K. Jiao, Talanta., 2015, 144, 1324-1328.