Supporting Information

Rapid Detection and Classification of Hongmu by Atmospheric Pressure Ionization Mass Spectrometry

Yiran Wang, a,b Yuze Li, a,b Xiao Wang, a,b Dehua Yu* c and Zongxiu Nie* a,b

a. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
b. University of Chinese Academy of Sciences, Beijing, 100049, China
c. Address here. Art and Design School, Beijing Institute of Technology, Beijing, 100081, China.

Contents:

Figure S1: Details of the APGD ionization source.

Figure S2: Different solvents for P. macarocarpus Kurz sample extraction.

Figure S3: Different extraction conditions for P. macarocarpus Kurz samples.

Figure S4: Different weights of P. macarocarpus Kurz samples.

Figure S5: Temperature optimization of heating platform through P. macarocarpus Kurz samples.

Figure S6: Mass spectra of different times. (A) D. Odorifera T. C. Chen and (B) P. macarocarpus Kurz. (C) Mass spectra of three parallel experiments of P. macarocarpus Kurz on the same day. (D) Mass spectra of P. macarocarpus Kurz.

Figure S7: PCA loadings plot of six kinds of hongmu.

Figure S8: PCA loadings plot of (A) three D. spp. and (B) three P. spp.

Figure S9: (A) 2D plots and (B) 3D plots of the PCA scores for the 10 compounds data from six kinds of hongmu. (C) 2D plots and (D) 3D plots of the PCA scores for the 9 most important variables data from six kinds of hongmu.

Figure S10: PCA loadings plot of (A) D. cochinchinensis Pierre and G. conjugata (Bolle) J. Léonard, (B) P. macarocarpus Kurz and G. Coleosperma and (C) P. erinaceus Poir. and G. tessmannii.
Figure S1. Details of the APGD ionization source. Image of the APGD device: front view (A) and side view (B). Image of the sand core filter: diameter (C) and height (D).
Figure S2. Different solvents for *P. macarocarpus* Kurz sample extraction.

Figure S3. Different extraction conditions for *P. macarocarpus* Kurz samples.
Figure S4. Different weights of *P. macarocarpus* Kurz samples.

Figure S5. Temperature optimization of heating platform through *P. macarocarpus* Kurz samples.
Figure S6. Mass spectra at different desorption times: (A) *D. Odorifera* T. C. Chen and (B) *P. macarocarpus* Kurz. (C) Mass spectra of three parallel experiments of *P. macarocarpus* Kurz on the same day. (D) Mass spectra of *P. macarocarpus* Kurz. C and D, we took the average spectrum of each sample over the first thirty seconds. Blank control of sand core filter, adding 10 μL MeOH on the sand core filter. Without sand core filter, adding 10 μL hongmu solution on the heating platform.
Figure S7. PCA loadings plot of six kinds of hongmu.
Figure S8. PCA loadings plot of (A) three *D. spp.* and (B) three *P. spp.*
Figure S9. (A) 2D plots and (B) 3D plots of the PCA scores for the 10 compounds data from six kinds of hongmu. (C) 2D plots and (D) 3D plots of the PCA scores for the 9 most important variables data from six kinds of hongmu.
Figure S10. PCA loadings plot of (A) *D. cochinchinensis* Pierre and *G. conjugata* (Bolle) J. Léonard, (B) *P. macarocarpus* Kurz and *G. Coleosperma* and (C) *P. erinaceus* Poir. and *G. tessmannii*. 