Electronic Supplementary Information

A highly selective chromogenic and fluorogenic chemodosimeter for dual detection of Cu^{2+} based on a redox-active calix[4]arene with isoxazolyl-chloroanthracene

Kai-Chi Chang,^{c*} Chan-Yu Chen,^c Chin-Yun Hsu,^{a,b} Li-Wei Lee,^c and Wen-Sheng Chung^{a,b *}

^a Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
^b Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
E-mail: wschung@nycu.edu.tw
^c Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
E-mail: changkc@mail.ntou.edu.tw

Page	No. Contents
S2	X-ray single crystal data for compound 1 and product Cu(CH ₃ CN) ₄ (ClO ₄)
S3	Synthesis of ligands 2 and 3.
S4	Synthesis of compounds 6 and 8.
S5	Fig. S1. ¹ H NMR (300 MHz, CDCl ₃) spectrum of ligand 1.
	Fig. S2. ¹³ C NMR and DEPT spectra (75 MHz, CDCl ₃) of ligand 1.
S6	Fig. S3. ¹ H NMR (300 MHz, CDCl ₃) spectrum of ligand 2.
	Fig. S4. ¹³ C NMR and DEPT spectra (75 MHz, CDCl ₃) of ligand 2.
S7	Fig. S5. ¹ H NMR (300 MHz, CDCl ₃) spectrum of ligand 3 .
	Fig. S6. ¹³ C NMR and DEPT spectra (75 MHz, CDCl ₃) of ligand 3 .
S8	Fig. S7. ¹ H NMR (300 MHz, CDCl ₃) spectrum of compound 6.
	Fig. S8. ¹³ C NMR and DEPT spectra (75 MHz, CDCl ₃) of compound 6.
S9	Fig. S9. ¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 8.
	Fig. S10. ¹³ C NMR and DEPT spectra (100 MHz, CDCl ₃) of compound 8.
S10	Fig. S11. HRMS of compound 8
S11	Fig. S12. (a) UV-vis and (b) fluorescent spectra of ligand 2 (20 μ M) in the absence
	and presence of 10 equiv of 13 metal perchlorates in CH ₃ CN/CHCl ₃ (v/v, 1:1).
S12	Fig. S13. (a) UV-vis and (b) fluorescent spectra of ligand 3 (20 μ M) in the absence
	and presence of 10 equiv of 13 metal perchlorates in CH ₃ CN/CHCl ₃ (v/v, 1:1)
S13	Fig. S14. (a) UV-vis and (b) fluorescent spectra of ligands 1 and 4 (20 μ M) in the
	absence and presence of 10 equiv of Cu(ClO ₄) ₂ in CH ₃ CN/CHCl ₃ (v/v, 1:1).
S14-15	Fig. S15. Binding constant of ligand 1 with $Cu(ClO_4)_2$ by (a) nonlinear least-square

curve-fitting plot; (b) the limits of detection and (c) Job plot of ligand 1 with Cu^{2+} in CH₃CN/CHCl₃ (v/v, 1:1).

- S16 **Fig. S16.** FTIR (KBr) spectra of ligand 1 complexed with Cu(ClO₄)₂.
- S17 Fig. S17. (a) UV-vis and (b) fluorescent spectra of ligand 1 (20 μ M) in the absence and presence of 10 equiv of Cu(CH₃CN)₄PF₆ in CH₃CN/CHCl₃ (v/v, 1:1).
- S18 **Fig. S18.** (a) UV-vis and (b) fluorescent spectra of ligand 1 (20 μ M) in different type of Cu²⁺ ions (10 equiv) in CH₃CN/CHCl₃ (v/v, 1:1).
- S19 **Fig. S19.** FTIR (KBr) spectra of (a) ligand 1 and (b) compound 8 in the 500–4000 cm⁻¹ region.
- S20 **Tables S1-S2.** Quantum yield of ligand **1**.

X-ray crystal data for compound 1: C₆₄H₄₄Cl₂N₂O₆, M = 1007.91, triclinic, a = 14.9128(2) Å, b = 15.7951(2) Å, c = 21.5622(3) Å, $\alpha = 90^{\circ}$, $\beta = 108.7995(6)^{\circ}$, $\gamma = 90^{\circ}$, V = 4808.00(11) Å³, space group P2₁/n, Z = 4, calculated density 1.392 Mg m⁻³, crystal dimensions (mm³): 0.40 × 0.30 × 0.30, T = 150(2) K, λ (Mo K_{α}) = 0.71073 Å, μ = Semi-empirical from equivalents, 46910 reflections collected, 11019 independent ($R_{int} = 0.0482$), 680 parameter refined on F^2 , $R_I = 0.0942$, $wR2[F^2] = 0.2081$ (all data), GOF on F^2 1.043, $\Delta \rho_{max} = 0.487$ eÅ⁻³. Crystallographic data for the structure has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 2184838.

X-ray crystal data for $Cu(CH_3CN)_4(ClO_4)$: C₈H₁₂ClCuN₄O₄, M = 327.21, triclinic, a = 8.34930(10) Å, b = 20.4107(3) Å, c = 23.8781(4) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 4069.19(10) Å³, space group P2₁2₁2₁, Z = 12, calculated density 1.602 Mg m⁻³, crystal dimensions (mm³): $0.45 \times 0.15 \times 0.12$, T = 150(2) K, λ (Mo K_{α}) = 0.71073 Å, μ = Semi-empirical from equivalents, 28578 reflections collected, 8960 independent ($R_{int} = 0.0549$), 500 parameter refined on F^2 , $R_1 = 0.0956$, $wR2[F^2] = 0.1413$ (all data), GOF on F^2 1.028, $\Delta\rho_{max} = 1.510$ eÅ⁻³. Crystallographic data for the structure has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 2184839. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: data_request@ccdc.cam.ac.uk, or fax: +44-1223-336033].

Synthesis of ligand 2

A mixture of compound 6 (0.200 g, 0.342 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (0.490 g, 1.69 mmol) in toluene (50 mL) was stirred. Then, Et₃N (1.04 g, 10.3 mmol) was added dropwise and the mixture was refluxed for 24 h. The solvent was removed under vacuum, and the residue was dissolved in chloroform (30 mL), washed with water, and dried over MgSO₄. The residue obtained after evaporation of the solvent was subjected to a silica gel column chromatography using a gradient polarity (eluent: ethyl acetate/*n*-hexane, 1/14 to 1/6) to afford 0.0860 g (23%) of ligand 2 as a yellow solid; mp 168–171 °C (CHCl₃/*n*-hexane); $R_{\rm f}$ = 0.84 (ethyl acetate/n-hexane = 1:3); ¹H NMR (300 MHz, CDCl₃) δ 8.60 (d, J = 8.7 Hz, 4H), 7.73 (d, J = 8.7 Hz, 4H), 7.68–7.58 (m, 4H), 7.57–7.43 (m, 4H), 7.17 (d, J = 7.3 Hz, 4H), 7.01 $(t, J = 7.3 \text{ Hz}, 2\text{H}), 6.42-6.35 \text{ (m, 4H)}, 6.26 \text{ (d, } J = 7.1 \text{ Hz}, 4\text{H}), 5.79 \text{ (s, 4H)}, 4.50 \text{ (d, } J = 13.6 \text{ (d,$ Hz, 4H), 3.77 (t, J = 7.1 Hz, 4H), 3.30 (d, J = 13.6 Hz, 4H), 2.03-1.83 (m, 4H), 0.93 (t, J = 7.4Hz, 6H); ¹³C NMR (75 MHz) δ169.4 (C_q), 160.4 (C_q), 155.5 (C_q), 155.1 (C_q), 137.5 (C_q), 133.0 (C_a), 131.1 (C_a), 131.0 (C_a), 129.1 (CH), 128.4 (C_a), 127.6 (CH), 126.8 (CH), 126.6 (CH), 126.1 (CH), 125.0 (CH), 123.3 (CH), 123.1 (C_a), 122.4 (CH), 108.6 (CH), 77.5 (CH₂), 64.2 (CH₂), 31.4 (CH₂), 23.3 (CH₂), 10.6 (CH₃); FAB-MS *m/z* 1092 (M⁺); HRMS *m/z* calcd for C₇₀H₅₆³⁵Cl₂N₂O₆ 1090.3515, found 1090.3497.

Synthesis of ligand 3

A mixture of compound **7** (0.200 g, 1.25 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (2.50 equiv) in toluene (50 mL) was stirred. Then Et₃N (15.0 equiv) was added dropwise and mixture was refluxed for 24 h. The solvent was removed under vacuum, and the residue was dissolved in chloroform (30 mL), washed with water, and dried over MgSO₄. The solvents were removed under vacuum and the residue was purified by column chromatography with ethyl acetate/*n*-hexane (1:14) to give 0.295 g (57%) of ligand **3** as a yellowish green powder; mp 170–172 °C (CHCl₃/*n*-hexane); $R_f = 0.86$ (ethyl acetate/*n*-hexane = 1:3); ¹H NMR (300 MHz, CDCl₃) δ 8.61 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H), 7.68–7.59 (m, 2H), 7.57–7.47 (m, 2H), 7.13–6.97 (m, 3H), 6.60 (s, 1H), 5.15 (s, 2H), 2.40 (s, 6H); ¹³C NMR (75.4 MHz) δ 168.9 (C_q), 160.7 (C_q), 155.0 (C_q), 131.3 (C_q), 131.0 (C_q), 130.9 (C_q), 129.1 (CH), 128.5 (C_q), 126.8 (CH), 126.7 (CH), 126.0 (CH), 125.1 (CH), 124.7 (CH), 122.7 (C_q), 107.2 (CH), 64.5 (CH₂), 16.4 (CH₃); EI-MS *m*/*z* 413 (M⁺); HRMS *m*/*z* calcd for C₂₆H₂₀³⁵CINO₂ 413.1183, found 413.1181.

Synthesis of compound 6

A solution of compound **5** (0.200 g, 0.398 mmol), sodium hydride (0.190 g, 7.92 mmol) and 1-iodopropane (0.270 g, 1.60 mmol) in DMF (5 mL) was stirred at room temperature for 2 h. The mixture was diluted with water (100 mL) and extracted with chloroform (3×20 mL). The organic layer was dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by silica gel chromatography with ethyl acetate/*n*-hexane (1:6) to give 0.197 g (85%) of pure compound **6** as white powders; mp 170-172 °C (CHCl₃/*n*-hexane); *R*_f = 0.84 (ethyl acetate/*n*-hexane = 1:3); ¹H NMR (300 MHz, CDCl₃) δ 7.14 (d, *J* = 7.4 Hz, 4H), 6.98 (t, *J* = 7.4 Hz, 2H), 6.32–6.18 (m, 6H), 4.99 (d, *J* = 1.8 Hz, 4H), 4.56 (d, *J* = 13.5 Hz, 4H), 3.71 (t, *J* = 6.8 Hz, 4H), 3.19 (d, *J* = 13.5 Hz, 4H), 2.38 (bt, 2H), 2.02-1.86 (m, 4H), 1.10 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (75 MHz) δ 155.4 (C_q), 137.8 (C_q), 133.1 (C_q), 128.8 (CH), 127.4 (CH), 123.2 (CH), 122.2 (CH), 80.8 (C_q), 77.2 (CH₂), 74.6 (CH), 59.8 (CH₂), 31.3 (CH₂), 23.6 (CH₂), 10.9 (CH₃); FAB-MS *m*/*z* 584 (M⁺); HRMS *m*/*z* calcd for C₄₀H₄₀O₄ 584.2927, found 584.2953.

Synthesis of compound 8

A solution of ligand **1** (30 mg, 0.03 mmol) and Cu(ClO₄)₂ (10 equiv) in 30 mL CH₃CN/CHCl₃ (v/v, 1:1) was stirred at room temperature for 12 h. The solvent was removed under vacuum, and the residue was dissolved in CH₂Cl₂ (30 mL), washed firstly with water, then with NH₄Cl, dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by silica gel chromatography with (ethyl acetate/*n*-hexane = 1:3) to give 17 mg (55%) of pure compound **8** as a yellow powder. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dt, *J* = 8.8, 1.1 Hz, 4H), 7.76 (dt, *J* = 8.7, 1.0 Hz, 4H), 7.65–7.58 (m, 4H), 7.54–7.48 (m, 4H), 6.83 (m, 4H), 6.74 (t, *J* = 7.5 Hz, 2H), 6.68 (s, 4H), 6.48 (s, 2H), 5.18 (s, 4H), 4.05 (d, *J* = 12.3 Hz, 4H), 3.32 (d, *J* = 12.3 Hz, 4H); ¹³C NMR (100 MHz) δ 187.8 (C_q), 185.7 (C_q), 167.8 (C_q), 160.8 (C_q), 154.6 (C_q), 147.9 (C_q), 132.5 (CH), 131.5 (C_q), 130.9 (C_q), 130.6 (C_q), 129.1 (C_q), 128.4 (C_q), 126.9 (CH), 125.8 (CH), 125.1 (CH), 124.4 (CH), 122.3 (C_q), 108.4 (CH), 65.6 (CH₂), 31.2 (CH₂); HRMS–FD (*m*/*z*) calcd for C₆₄H₄₀Cl₂N₂O₈, 1034.21672; found, 1034.21637. IR (cm⁻¹): 2921 (C-H stretch), 1655 (C=O stretch, quinone), 1608 (C=C stretch), 759 (C-Cl stretch).

Fig. S1. ¹H NMR (300 MHz, CDCl₃) spectrum of ligand 1.

Fig. S2. ¹³C NMR and DEPT spectra (75 MHz, CDCl₃) of ligand 1.

Fig. S3. ¹H NMR (300 MHz, CDCl₃) spectrum of ligand 2.

Fig. S4. ¹³C NMR and DEPT spectra (75 MHz, CDCl₃) of ligand 2.

Fig. S5. ¹H NMR (300 MHz, CDCl₃) spectrum of ligand 3.

Fig. S6. ¹³C NMR and DEPT spectra (75 MHz, CDCl₃) of ligand 3.

Fig. S7. ¹H NMR (300 MHz, CDCl₃) spectrum of compound 6.

Fig. S8. ¹³C NMR and DEPT spectra (75 MHz, CDCl₃) of compound 6.

Fig. S9. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 8.

Fig. S10. ¹³C NMR and DEPT spectra (100 MHz, CDCl₃) of compound 8.

Fig. S11. HRMS of compound 8.

Fig. S12. (a) UV-vis and (b) fluorescent spectra ($\lambda_{ex} = 375 \text{ nm}$) of ligand 2 (20 μ M) in the absence and presence of 10 equiv of 13 metal perchlorates in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K.

Fig. S13. (a) UV-vis and (b) fluorescent spectra ($\lambda_{ex} = 375 \text{ nm}$) of ligand **3** (20 μ M) in the absence and presence of 10 equiv of 13 metal perchlorates in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K.

(a)

Fig. S14. (a) UV-vis and (b) fluorescent spectra ($\lambda_{ex} = 375$ nm) of ligands 1 and 4 (20 μ M) in the absence and presence of 10 equiv of Cu(ClO₄)₂ in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K, respectively.

Fig. S15. Binding constant of ligand 1 (20 μ M) with Cu(ClO₄)₂ by (a) nonlinear least-square curve-fitting plot; (b) the limits of detection (LOD): changes in the fluorescence intensity of compound 1 (20 μ M) upon the addition of various concentration of Cu²⁺ in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K. The fluorescence intensity of compound 1 at 430 nm decreases linearly with the concentration of Cu²⁺ in the range of 0 ~ 60 μ M. The limit of detection (LOD) was determined to be 3 × 3.98/(7.13 × 10⁶) M = 1.674 μ M, in which ten experiments were performed for the determination of standard deviation. (c) Job plot of ligand 1 with Cu²⁺ in CH₃CN/CHCl₃ (v/v, 1:1).

• Nonlinear least-square curve-fitting plot

$$I/I_0 = 1 + \frac{I_{lim}/I_0 - 1}{2} \left[1 + \frac{C_M}{C_H} + \frac{1}{K_a C_H} - \sqrt{\left(1 + \frac{C_M}{C_H} + \frac{1}{K_a C_H} \right)^2 - 4\frac{C_M}{C_H}} \right]$$

where I is fluorescent intensity of 1 in presence of Cu^{2+} ion, I_0 is fluorescent intensity of 1 without Cu^{2+} ion, I_{lim} is fluorescent intensity reaching a limitation by adding excessive Cu^{2+}

ion, C_M is the concentraton of Cu^{2+} ion added and C_H is the concentration of **1**. By allowing I_{lim}/I_0 and $1/K_aC_H$ to be floating parameters (P1 and P2), the K_a value was obtained by a nonlinear least-squares analysis of I/I_0 versus $[Cu^{2+}]/[1]$.

References for nonlinear least-square curve-fitting plot

- L. Fang, W.-H. Chan, Y.-B. He, D. W. J. Kwong and A. W. M. Lee, *J. Org. Chem.* 2005, 70, 7640–7646.
- 2. B. Valeur, J. Pouget and J. Bouson, Journal of Physical Chemistry, 1992, 96, 6545–6549.

• The limit of Detection (LOD)

 $LOD = 3 \times standard deviation/slope$

References for LOD.

- 1. G. L. Long and J. D. Winefordner, Analytical Chemistry, 1983, 55, 712A-724A.
- 2. V. Thomsen, D. Schatzlein and D. Mercuro, Spectroscopy, 2003, 18, 112–114.
- 3. H. J. Kim, J. H. Lee and J.-I. Hong, *Tetrahedron*, 2011, **52**, 4944–4946.

(a)

Fig. S16. FTIR (KBr) spectra of ligand 1 and its complexation with $Cu(ClO_4)_2$. (a) Full region in 500–4000 cm⁻¹; (b) the expansion of (a) in the 500–2000 cm⁻¹ region.

S16

(b)

Fig. S17. (a) UV-vis and (b) fluorescent spectra ($\lambda_{ex} = 375 \text{ nm}$) of ligand 1 (20 μ M) in the absence and presence of 10 equiv of Cu(CH₃CN)₄PF₆ in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K, respectively.

(b)

Fig. S18. (a) UV-vis and (b) fluorescent spectra ($\lambda_{ex} = 375$ nm) of ligand 1 (20 μ M) in different Cu²⁺ salts (10 equiv) in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K, respectively.

S18

Fig. S19. FTIR (KBr) spectra of (a) ligand 1 and (b) compound 8 in the 500–4000 cm⁻¹ region.

Quantum yields (Φ_F)

The relative fluorescent quantum yields (Φ_F) of 9,10-diphenylanthrance (DPA) and ligand 1 in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K were determined using 9,10-diphenylanthrance as a standard (Φ_F of 9,10-diphenylanthrance in cyclohexane = 0.97 was used) based on eqn 1. $\Phi_F = (F/F_o) \times (A_o/A) \times (n/n_o)^2 \times \Phi_F^o$ (eqn 1), where A and A_o are the absorbance of the sample and the standard at the excitation wavelength, respectively; F and F_o are the integrated fluorescence emissions of the sample and the standard, respectively; and n and n_o are solvent refractive indexes of the sample and the standard, respectively. The results are summarized in Tables S1 and S2. References for quantum yields (Φ_F): (a) A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), *Pure Appl. Chem.*, 2011, **83**, 2213–2228; (b) W. R. Dawson and M. W. Windsor, Fluorescence yields of aromatic compounds, *J. Phys. Chem.*, 1968, **72**, 3251–3260; (c) N. J. Turro, Modern molecular photochemistry, Benjamin Cummings, Menlo Park, 1978.

Table S1. The data for the quantum yield measurement of 9,10-diphenylanthrance in cyclohexane or CH₃CN/CHCl₃ (v/v, 1:1) at 298 K ($\lambda_{ex} = 355$ nm).

	A _(355 nm)	F	F/F _o	A _o /A	n/n _o	Quantum yield
DPA ¹	0.068	51260704	1.00	1.00	1.00	0.97
DPA	0.085	63411498	1.24	0.80	0.98	0.94

¹ The data of 9,10-diphenylanthrance (DPA) was measured in cyclohexane.

Table S2. The data for the quantum yield measurement of ligand 1 in CH₃CN/CHCl₃ (v/v, 1:1) at 298 K using 9,10-diphenylanthrance (DPA) as the standard ($\lambda_{ex} = 355$ nm).

	A _(355 nm)	F	F/F _o	A _o /A	n/n _o	Quantum yield
1	0.049	4709391	0.074	1.73	1.00	0.12
DPA	0.085	63411498	1.00	1.00	1.00	0.94