Supplementary Information

Dual-mode Ion-Selective Electrodes and Distance-based Microfluidic Device for Detection of Multiple Urinary Electrolytes

Kamonchanok Phoonsawat ^{a, b, c}, Tugba Ozer ^{d*}, Wijitar Dungchai ^a, Charles S. Henry ^{d, e, f*}

^a Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

^bEngineering Science Classroom, Darunsikkhalai School, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

^c Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States

^d Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220 Istanbul, Turkey

^e School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States

^f Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand

Co-Corresponding authors: Tugba Ozer and Charles S. Henry E-mail: tozer@yildiz.edu.tr (Tugba Ozer) E-mail: Chuck.Henry@colostate.edu (Charles S. Henry)

Table of Contents

Table title

Table S1 Estimated cost breakdown of reagents and materials for each device.

Table S2 The effect of carbon black modification on potentiometric response of the ISEs (n=4)
Table S3 Potentiometric response of K⁺-ISE and Na⁺-ISE obtained in absence and in presence of conditioning step (n=4)
Table S4 Potentiometric response parameters of K⁺-ISE and Na⁺-ISE (n=10)

 Table S5 Shelf life of dual-ISE-dPAD (n=4)

Figure captions

Figure S1 SEM images of (a) unmodified, (b) carbon black (5 mg/mL in THF) modified screen-printed electrodes. (x5000 magnified).

Figure S2 Effect of pH on potentiometric responses of K⁺-ISE and Na⁺-ISE.

Figure S3 The selectivity of (a) K⁺-ISE and (b) Na⁺-ISE in the coexistence of interference ions. (Concentration: 10 mM of targets analyte (K⁺ or Na⁺) and potential interferences including 100 mM of Ca²⁺, Mg²⁺, PO₄^{3⁻}, CO₃²⁻, D-glucose, and Urea)

Figure S4 Water layer tests of the (a) K⁺-ISE and (b) Na⁺-ISE.

Figure S5 Effect of pH on the Cl⁻ detection on dPAD (20 mM Cl⁻)

Figure S6 The selectivity of Cl⁻ in the coexistence of interference ions. Concentration: 20 mM Cl⁻ and potential interferences including 100 mM of Ca²⁺, Mg²⁺, PO₄³⁻, CO₃²⁻, glucose, urea, Na⁺, and K⁺

	Materials	Estimated cost/device (\$)
	Whatman [®] qualitative filter paper	0.0075
	Solid wax ink	0.0050
	Double-side adhesive	0.203
dPAD	AgNO ₃	0.0010
	$K_2Cr_2O_7$	0.000054
	Subtotal	0.22
	Graphite powder	0.0014
	Carbon ink	0.015
Electrode	Ag AgCl ink	0.009
	Carbon black	0.00000025
	Subtotal	0.025
	Valinomycin	0.032
	KTCIPB	0.0012
	NaTFPB	0.0024
	DOS	0.048
	High molecular weight PVC	0.000047
ISM components	P(BMA-co-MM)	0.000412
	KCl	0.0000544
	ETH500	0.00464
	THF	0.000772
	Subtotal	0.089
Total	\$ 0.	33

Table S1. Estimated cost breakdown of reagents and materials for each device.

targetion	slope (mV/decade)		
target ion	with carbon black	without carbon black	
K ⁺	54.16 ± 3.94	44.54 ± 3.49	
Na ⁺	55.82 ± 1.15	38.03 ± 6.78	

Table S2 The effect of carbon black modification on potentiometric response of the ISEs (n=4)

Table S3 Potentiometric response of K⁺-ISE and Na⁺-ISE obtained in absence and in presence of

taugation	slope (mV/decade)		
target ion	non conditioned	overnight conditioned	
K ⁺	54.16 ± 3.94	43.81 ± 2.22	
Na ⁺	55.82 ± 1.15	38.42 ± 5.14	

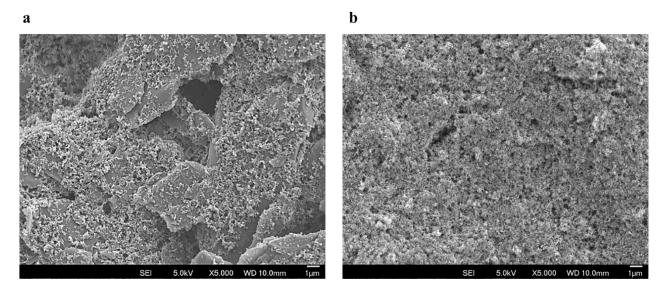
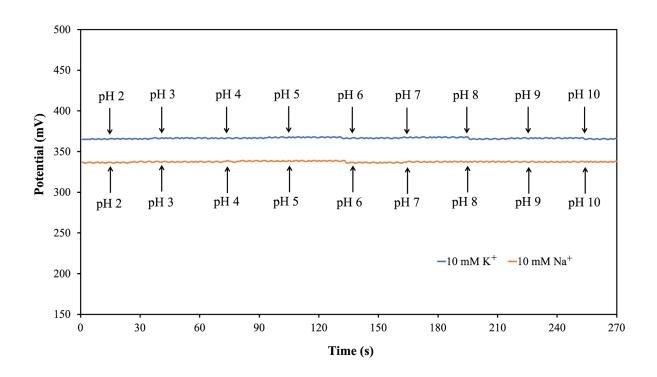

conditioning step (n=4)

Table S4 Potentiometric response parameters of K⁺-ISE and Na⁺-ISE (n=10)


target ion	slope (mV/decade)	RSD %	intercept (mV)	RSD %
K^+	52.85±2.65	5.0	386.38±7.91	2.0
Na ⁺	52.10±1.41	2.7	333.77±9.78	2.9

weeks _	slope (mV	%Recovery	
	K ⁺	Na ⁺	Cl
0	54.14 ± 3.94	55.08 ± 1.15	94 ± 5
1	53.50 ± 1.63	53.98 ± 3.41	92 ± 5
2	52.70 ± 1.20	52.62 ± 0.41	102 ± 6
3	51.10 ± 0.28	51.63 ± 2.06	92 ± 5
4	50.70 ± 0.42	51.09 ± 2.18	90 ± 9
5	50.18 ± 1.22	51.53 ± 0.21	94 ± 5
6	50.40 ± 0.85	50.53 ± 0.71	99 ± 5
7	51.40 ± 1.84	50.34 ± 1.51	97 ± 8
8	50.04 ± 0.85	51.65 ± 1.38	94 ± 5
Average	51.57 ± 1.51	52.05 ± 1.58	95 ± 4

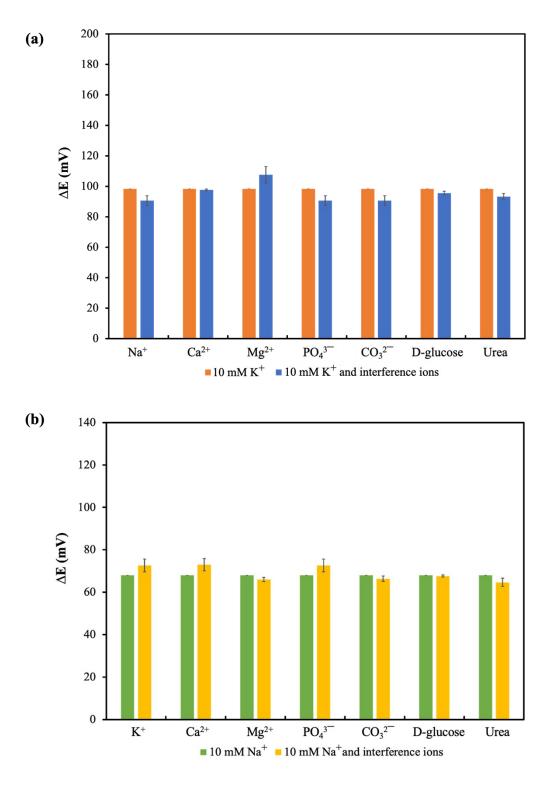

 Table S5 Shelf life of dual-ISE-dPAD (n=4)

Figure S1 SEM images of (a) unmodified, (b) carbon black (5 mg/mL in THF) modified screen-printed electrodes (x5000 magnified).

Figure S2 The selectivity of (a) K⁺-ISE and (b) Na⁺-ISE in the coexistence of interference ions. (Concentration: 10 mM of targets analyte (K⁺ or Na⁺) and potential interferences including 100 mM of Ca²⁺, Mg²⁺, PO₄^{3⁻}, CO₃²⁻, D-glucose, and Urea)

Figure S3 The selectivity of (a) K^+ and (b) Na⁺ in the coexistence of interference ions. (Concentration: 10 mM of targets analyte (K⁺ or Na⁺) and potential interferences including 100 mM of Ca²⁺, Mg²⁺, PO₄³⁻, CO₃²⁻, D-glucose, and Urea)

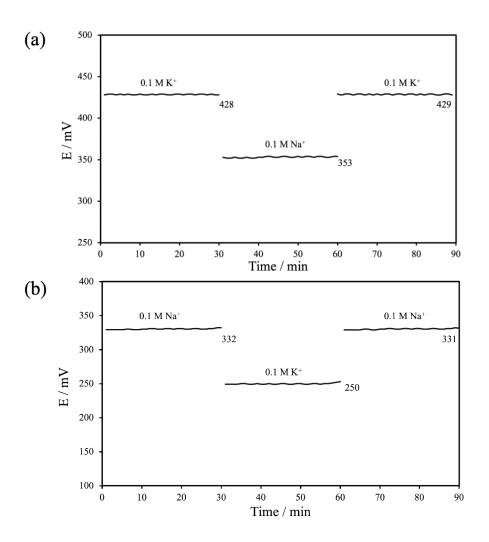
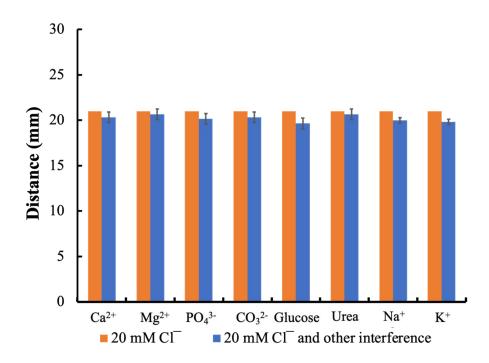



Figure S4 Water layer tests of the (a) K⁺-ISE and (b) Na⁺-ISE.

Figure S5 Effect of pH on the Cl⁻ detection on dPAD (20 mM Cl⁻)

Figure S6 The selectivity of Cl⁻ in the coexistence of interference ions. Concentration: 20 mM Cl⁻ and potential interferences including 100 mM of Ca²⁺, Mg²⁺, PO₄³⁻, CO₃²⁻, glucose, urea, Na⁺, and K⁺