Efficient exosome subpopulations isolation and proteomic profiling by Sub-ExoProfile chip towards cancer diagnosis and treatment

Yuqing Wang, ^{†a} Shurong Wang, ^{†a} Aipeng Chen,^a Ruoke Wang,^a Lanting Li,^b Xiaoni Fang*^a

- a. School of Pharmacy, Fudan University, Shanghai, 200438, China
- b. Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
- [†] Y. W and S. W. contributed equally
- * Corresponding author: X. F. Email address: xnfang@fudan.edu.cn

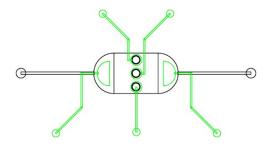
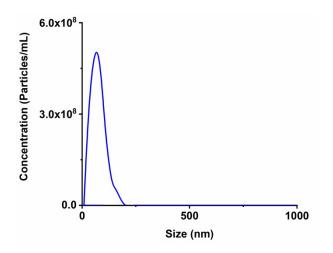



Fig S1. Design of the Sub-ExoProfile chip.

Fig. S2 NTA measurements of exosomes isolated from MCF-7 breast cancer cell culture medium by classical ultracentrifugation.

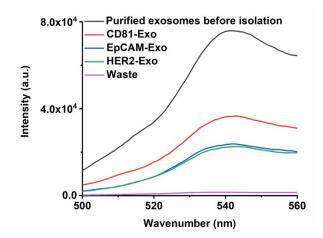


Fig. S3 Fluorescence change of the DiO-stained exosomes before and after isolation by the Exo-SubProfile chip.

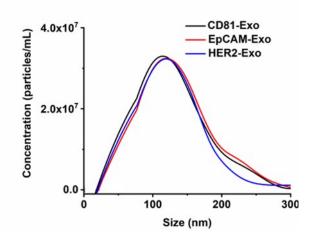
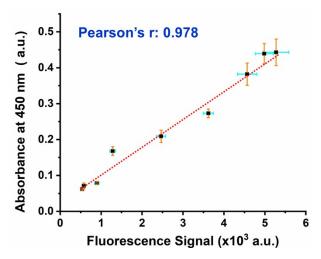
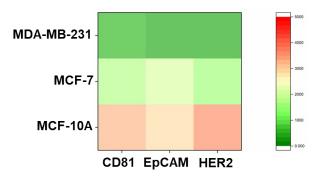




Fig. S4 Size distribution of the three CD81-Exo, EpCAM-Exo, and HER2-Exo captured by the Exo-SubProfile chip.

Fig. S5 Correlations between microplate ELISA and on-chip analysis of CD81, EpCAM and HER2 positive exosomes from three cell lines.

Fig. S6. Profiling of CD81, EpCAM, HER2 specific exosome subpopulations from MDA-MB-231, MCF-7, MCF-10A cell lines by flat glass chip.

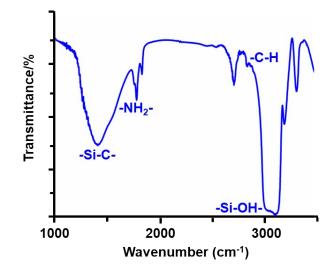


Fig. S7 FT-IR of the self-assembled amphiphilic mesoporous SiNPs on the nanopillars of Exo-SubProfile chip.

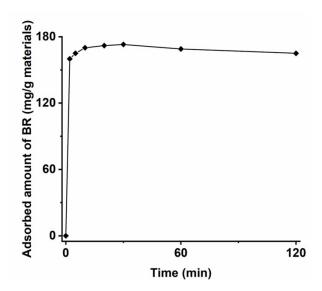
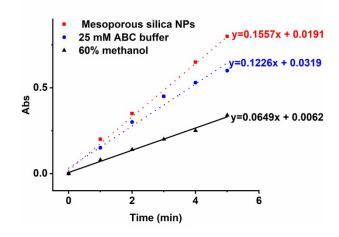



Fig. S8 Adsorption of model membrane protein bacteriorhodopsin into the self-assembled amphiphilic mesoporous SiNPs on the nanopillars of Exo-SubProfile chip as a function of incubation time.

Fig. S9 Trypsin activity in different system. The substrate involved in the system was BAEE with an initial concentration of 0.8 mg/mL. The absorbance (Abs) corresponds to BA at 253 nm, which was generated from BAEE by trypsin-catalyzed hydrolysis. The concentration of enzyme was 0.5 mg/mL.

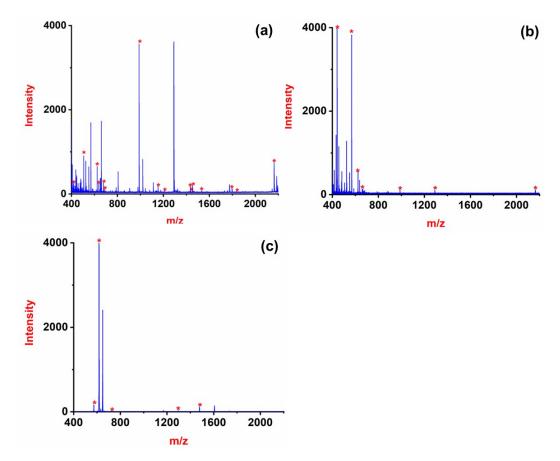
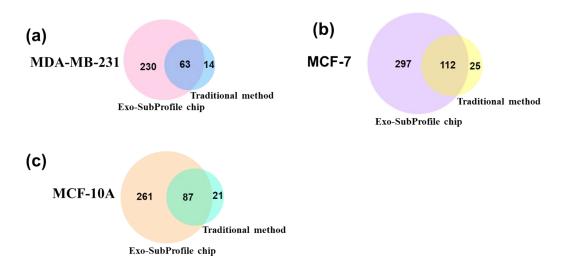
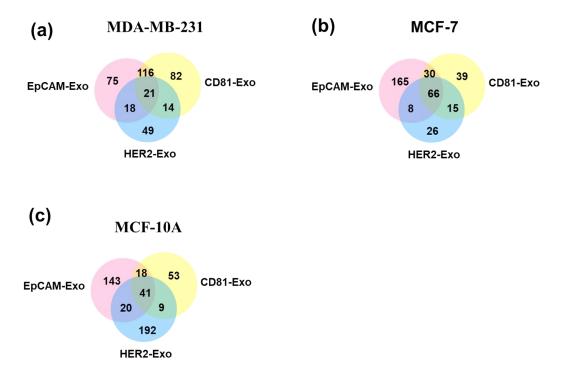




Fig. S10 Mass spectra of proteolysis products from (a) 10 min self-assembled mesoporous SiNPs on the Exo-SubProfile chip-assisted BR (100 ng/ μ L) digestion, (b) 10 min nonporous SiNPs-assisted BR (100 ng/ μ L) digestion, and (c) 10 min traditional in-solution BR (100 ng/ μ L) digestion

Fig. S11 Venn diagram of identified total proteins from the three CD81-Exo, EpCAM-Exo, and HER2-Exo of (a) MDA-MB-231, (b) MCF-7, and (c) MCF-10A by both the Exo-SubProfile chip and traditional method.

Fig. S12 Venn diagram of identified proteins from the three CD81-Exo EpCAM-Exo, and HER2-Exo of (a) MDA-MB-231, (b) MCF-7, and (c) MCF-10A by the Exo-SubProfile chip.

Fig. S13 Quantitative principal analysis (PCA) shows that the Exo-SubProfile chip enabled the three CD81-Exo, EpCAM-Exo, and HER2-Exo from MCF-7 and MCF-10A are well separated.

Table S1. The detailed information about the four categories of identified proteins from different

 exosomes subpopulations in different type of cancer patients.

Category	Un ipr ot	Ge ne	HER2 positive BC			TNBC			Description
			CD8 1- Exo	EpC AM- Exo	HE R2- Exo	CD8 1- Exo	EpC AM- Exo	HE R2- Exo	
Tyrosine kinases	P0 62 13	INS R	1	0	0	5	1	0	Isoform Short of Insulin receptor
	P0 46 26	ER BB 2	0	18	0	0	0	0	Receptor tyrosine-protein kinase erbB-2
	P0 05 33	EG FR	2	0	0	3	0	0	Epidermal growth factor receptor
	P3 05 30	AX L	0	0	5	0	0	0	Tyrosine-protein kinase receptor UFO
	P3 05 08	HL A-C	0	0	1	0	1	0	HLA class I histocompatibility antigen, Cw-12 alpha chain
Major histocompatibilit y class I proteins	P0 18 92	HL A- A	0	0	0	3	0	0	HLA class I histocompatibility antigen, A-2 alpha chain
	P6 17 69	B2 M	1	0	0	1	0	0	Beta-2-microglobulin
	P1 49 23	JUP	0	2	0	2	0		
	O6 07 16	CT NN D1	2	0	1	1	2	0	Junction plakoglobin
	P0 55 56	ITG B1	0	0	0	20	3	1	Catenin delta-1
Cell adhesion molecules	P2 60 06	ITG A3	1	0	0	0	19	0	Integrin alpha-3
	P1	ITG	0	0	1	20	3	0	Integrin alpha-2

	73	A2							
	01								
	P3	CT							
	52	NN	2	0	0	4	0	0	Catenin alpha-1
	21	A1							
	P4	MC							Cell surface glycoprotein
	31	AM	0	0	0	0	18	0	MUC18
	21								
	Q0	DS							
	24	C2	0	0	1	0	0	0	Desmocollin-2
	87								
	P1	ITG	0	0	1	0	0	1	Integrin beta, Isoform Beta-
	61 44	B4	0		1	0	0	1	4A
	P1								
	60	CD	0	0	0	1	0	0	CD44 antigen
	70	44				_	-		
	P2								
	19	CD	0	0	0	3	0	0	CD9 antigen
	26	9							
	P4	CD							
	85	151	0	0	0	0	1	0	CD151 antigen
	0								
	Dí								
	P6	GN	15		2	2	0		Guanine nucleotide-binding
	28 73	B1	15	2	3	3	0	0	protein G(I)/G(S)/G(T) subunit beta-1
	P6								Guanine nucleotide-binding
	28	GN	12	0	1	7	1	0	protein G(I)/G(S)/G(T)
	79	B2	12		1	,	1		subunit beta-2
	P0								
	48	GN	11	4	0	2	0	0	Guanine nucleotide-binding
	99	AI2							protein G(i) subunit alpha-2
	P4	CD							
	89	97	2	0	8	0	1	1	CD97 antigen
	60								
	P6	GN							Guanine nucleotide-binding
	39	AS	5	2	1	0	1	0	protein G(i) subunit alpha-1
	02								• • • •
G protein-	Q1	GN			_	_	_		Guanine nucleotide-binding
coupled receptors	43	A13	0	3	0	0	3	0	protein subunit alpha-13
	44								