Electronic Supplementary Information

One-step and highly sensitive quantification of fusion gene with isothermal amplification initiated by fusion-site anchored stemloop primer

Honghong Wang[†], Shuhui Wang[†], Hui Wang^{*}, Yuanwen Liang and Zhengping Li^{*}

Beijing Key Laboratory for Bioengineering and Sensing Technology; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.

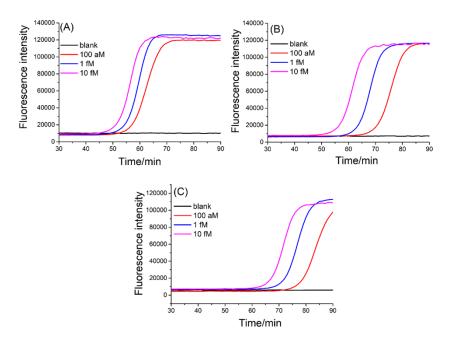
[†]These authors contributed equally to this work.

Email: winscavin@ustb.edu.cn; lzpbd@ustb.edu.cn.

Content List

- 1. Table S1. The sequences of the oligonucleotides used in this work
- 2. Optimization of the concentration of stem-loop primers
- 3. Optimization of the concentration of reverse transcriptase
- 4. Optimization of the concentration of Bst DNA polymerase
- 5. The reaction performance of e13a2 and e14a2 assay by RT-PCR.

6. Table S2. Comparison of the proposed strategy with previously reported methods for fusion gene detection


ID	Sequences (5'-3' direction)			
e13a2 fragment	UGUGUGAAACUCCAGACUGUCCACAGCAUUCCGCUGACC			
	CAAUAAGGAAG*AAGCCCUUCAGCGGCCAGUAGCAUCUGA			
e13a2-SLP1	CGACAGCAGAGGATTTGTTGTGTGGGAAGTGTGAGCGGATTTT			
	CCTCTGCTGTCGTTTTCCGCTGAAGGGCTTCTTCCT			
e13-SLP2	ATCGTCGTGACTGTTTGTAATAGGACAGAGCCCCGCACTTCA			
	GTCACGACGATTTTAGCATTCCGCTGACCATCAATA			
e13-BP	TGAAACTCCAGACTGTCCA			
FIP	CGACAGCAGAGGATTTGTTGTGTGGGAAGTGTGAGCGGA			
BIP	ATCGTCGTGACTGTTTGTAATAGGACAGAGCCCCGCAC			
e1a2 fragment	ACCGGGCAGATCTGGCCCAACGATGGCGAGGGCGCCUUCCA			
	UGGAGACGCAG*AAGCCCUUCAGCGGCCAGUAGCAUCUGA			
e14a2 fragment	GGGTTTCTGAATGTCATCGTCCACTCAGCCACUGGAUUUAAG			
	CAGAGUUCAA*AAGCCCUUCAGCGGCCAGUAGCAUCUGA			
e14a2-SLP1	CGACAGCAGAGGATTTGTTGTGTGGGAAGTGTGAGCGGATTTT			
	CCTCTGCTGTCGTTTTGCCGCTGAAGGGCTTTTGAAC			
e14-SLP2	ATCGTCGTGACTGTTTGTAATAGGACAGAGCCCCGCACTTCA			
	GTCACGACGATTTTTCAGCCACTGGATTTAAGCAGA			
e14-BP	TTCTGAATGTCATCGTCCA			
e19a2 fragment	GTGTCCGGTGTGGCCACGGACATCCAGGCACUGAAGGCAGC			
	CUUCGACGUCA*AAGCCCUUCAGCGGCCAGUAGCAUCUGA			
RT-Primer ABL	TCAGATGCTACTGGCCGCTG			
e13 Primer	GTGAAACTCCAGACTGTCCAC			
e14 Primer	GTCATCGTCCACTCAGCCAC			
e13a2-TaqMan probe	FAM-AAGGGCTTCTTCCTTATTGA-MGBNFQ			
e14a2-TaqMan probe	FAM-AAGGGCTTTTGAACTCTGCT MGBNFQ			

1. Table S1. The sequences of the oligonucleotides used in this work

The symbol '*' indicates the fusion junction site.

2. Optimization of the concentration of stem-loop primers

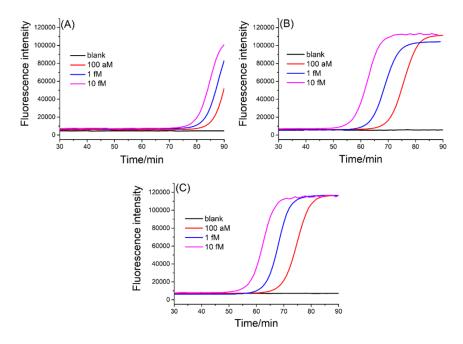

The proposed method for fusion gene assay is based on stem-loop primermediated isothermal exponential amplification. Thus, the concentration of stem-loop primers will affect the reaction performance. To investigate the influence of the dosage of stem-loop primers, 20 nM, 2 nM, and 200 pM e13a2-SLP1 and e13-SLP2 were investigated by detecting the blank, 10 fM, 1 fM and 100 aM e13a2 with the proposed assay. As depicted in Fig. S1 (A-C), as the concentration of e13a2-SLP1 and e13-SLP2 increased from 200 pM to 20 nM, the POI values of the e13a2 gradually decreased vs no effect on the blank. The amount of stem-loop primers affects their hybridization efficiency with the target matching sequences and consequently affects the efficiency of reverse transcription and nucleic amplification. So, increasing the primer amounts can result in more double stem-loop DNA and a high speed of LAMP leading to decreased POI values. One can see from Fig. S1, the differences of the POI values between 10 fM, 1 fM and 100 aM e13a2 using 2 nM SLP1 and SLP2 were greater than that using 20 nM. Therefore, taking into consideration of detection sensitivity and detection time, 2 nM stem-loop primers were selected for the poposed assay.

Fig. S1 The effect of the dosage of stem-loop primers on the fusion genes assay. The dosage of stem-loop primer is 20 nM (A), 2 nM (B) and 200 pM (C).

3. Optimization of the concentration of reverse transcriptase

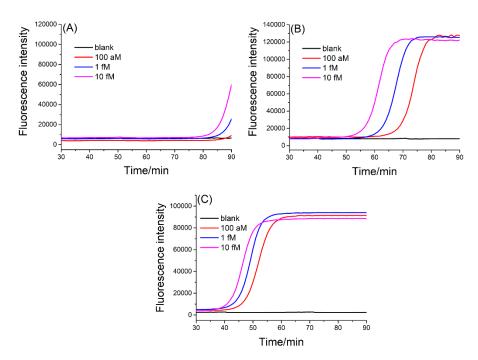

Reverse transcriptase dosage can affect the efficiency of the transcript reaction. Therefore, the dosage of WarmStart RTx reverse transcriptase was optimized by detecting blank and e13a2 at 100 aM, 1 fM, and 10 fM, respectively with the proposed assay. 7.5 U, 15 U, and 20 U WarmStart RTx reverse transcriptase were investigated. When the amount of reverse transcriptase is 7.5 U, it can be seen from Fig. S2A that the POI values show a smaller difference between the different concentrations of e13a2 compared with that shown in Fig. S2B. In addition, the reaction rate is also slowed down. This is because the low amount of reverse transcriptase leads to a decrease of the reverse transcript efficiency. When the amount of reverse transcriptase is 15 U or 20 U, the reverse transcript efficiency increases and the difference in POI value between the different concentrations of e13a2 reached the maximum. These results suggest that 15 U of reverse transcriptase is sufficient for fusion gene analysis. Taking into consideration of detection sensitivity and the cost of reagent, 15 U was selected as the optimum amount of reverse transcriptase for the fusion gene assay.

Fig. S2 The effect of the dosage of reverse transcriptase on the fusion genes assay. The dosage of reverse transcriptase is 7.5 U (A), 15 U (B) and 20 U (C).

4. Optimization of the concentration of Bst DNA polymerase

The amplification reaction depends on the synthesis of auto-cycling strand displacement DNA by Bst DNA polymerase with displacement activity. Therefore, the concentration of Bst DNA polymerase is an important parameter for the fusion gene assay. The effect of the amount of Bst DNA polymerase was investigated by detecting blank and e13a2 at 100 aM, 1 fM, and 10 fM, respectively. As shown in Fig. S3 (A-C), with increasing the amount of Bst DNA polymerase from $2 \sim 8$ U, the amplification reaction was correspondingly accelerated, resulting in the decrease of POI values of real-time fluorescence curves. However, the difference in the POI values between 100 aM, 1 fM and 10 fM e13a2 gradually decreased when Bst DNA polymerase was increased from 4 U to 8 U. When 2 U polymerase was used, the amplification reaction required > 90 min to generate a detectable signal. Taking into consideration of both reaction time and detection sensitivity, 8 U was selected as the optimum amount of Bst DNA polymerase for the fusion gene assay.

Fig. S3 The effect of the dosage of Bst DNA polymerase on the fusion genes assay. The dosage of Bst DNA polymerase is 2 U (A), 4 U (B) and 8 U (C).

5. The reaction performance of e13a2 and e14a2 assay by RT-PCR.

Fig. S4 Analysis performance of e13a2 and e14a2 assay by RT-PCR. (A) and (C): Real-time fluorescence amplification curves generated by different concentrations of synthetic e13a2 and e14a2 fusion transcript fragments of BCR-ABL, respectively. The amount of e13a2 from left to right was 100 pM, 10 pM, 1 pM, 100 fM, 10 fM, 1 fM 100 aM, and blank. The blank has the same detection steps as e13a2. (B) and (D): The linear relationship between the C_T values and the negative logarithm (-lg) of e13a2 and e14a2 concentrations, respectively. The fitted equations are C_T =-24.50-3.40lg C_{e13a2} (M) with a correlation coefficient of R²=0.9965 and C_T =-23.90-3.27lg C_{e14a2} (M) with a correlation coefficient of R²=0.9924. Each test was repeated three times. Error bars represent standard deviations of parallel assays.

Target	Operating	Detection	Detection	Reference
	steps	limits	mode	
EML4-ALK variant	Multi-step	4.9×10^{-5}	Fluorescence	Chem. Commun. 2022, 58,
		ng/µL		7618-7621.
BCR-ABL fusion gene	Multi-step	100 aM	Visual	Anal. Chem. 2019, 91, 12428-
			detection	12434.
<i>PML-RAR</i> α fusion gene	Multi-step	100 aM	Real-time	Analyst. 2022, 147, 2207-
			fluorescence	2214.
BCR-ABL fusion gene	Multi-step	10 fM	Fluorescence	Analyst. 2018, 143, 4974-
				4980.
BCR-ABL fusion gene	Multi-step	0.27 fM	ECL	Biosens. Bioelectron. 2022,
				210, 114287
BCR-ABL fusion gene	One	100 aM	Real-time	This work
			fluorescence	

6. Table S2. Comparison of the proposed strategy with previously reported methods for fusion gene detection