Supplementary Information

A colorimetric aptasensor based on hemin/EpCAM aptamer

DNAzyme for sensitive exosomes detection

Jingjing Kuang^a, Zhibo Fu^a, Xuezhi Sun^a, Chuhui Lin^a, Shenglong Yang^a, Jiayao Xu^a, Min Zhang^b, Hongyang Zhang^a, Fanghong Ning^{c, *}, Ping Hu^{a, *}

^a Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
^b Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
^c School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China

Table S1. The sequences of	of ssDNA used in this work
----------------------------	----------------------------

Aptamer	Sequences (5'-3')
CD63 aptamer	CACCCCACCTCGCTCCCGTGACACTAATGCTA
MUC1 aptamer	TTGA TCCT TTGG ATA CC
EpCAM aptamer	CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGGTTGGCCTG

Table S2. Comparison of the Michaelis-Menten Constant (K_m) and MaximumReaction Rate (V_{max}) of the Reactions catalyzed by HRP and hemin/EpCAM aptamerDNAzyme.

Catalyst	Substrate	Km (mM)	Vmax (M/s)
HRP	H2O2	4.48	4.920×10 ⁻⁸
HRP	TMB	0.72	6.224×10 ⁻⁸
hemin/EpCAM aptamer	H2O2	6.31	19.21×10 ⁻⁸
hemin/EpCAM aptamer	TMB	0.12	7.56×10 ⁻⁸

^{*} Corresponding authors.

E-mail addresses: fhning@ecust.edu.cn (F. Ning), huping@ecust.edu.cn (P. Hu)

Fig. S1 (A) DLS image of exosomes. (B) Western blot analysis of CD9 and TSG101 in MCF-7 cells and exosomes.

Fig. S2 (A) The time-dependent UV spectra of hemin/EpCAM aptamer. (B) The UV-vis spectra of hemin/EpCAM aptamer at pH 4-6.

Fig. S3 Steady-state kinetic assay of HRP and hemin/EpCAM aptamer DNAzyme. (A)

Reaction velocity catalyzed by HRP with a fixed H_2O_2 concentration (5 mM) and various TMB concentrations. (B) Reaction velocity catalyzed by HRP with a fixed TMB concentration (2 mM) and various H_2O_2 concentrations. (C) Reaction velocity catalyzed by hemin/EpCAM aptamer with a fixed H_2O_2 concentration (5 mM) and various TMB concentrations. (D) Reaction velocity catalyzed by hemin/EpCAM aptamer with a fixed TMB concentrations. (2 mM) and various TMB concentrations. (D) Reaction velocity catalyzed by hemin/EpCAM aptamer with a fixed TMB concentration (2 mM) and various H_2O_2 concentrations.

Fig. S4 Experimental parameter optimization of (A) Concentration of TMB; (B) Concentration of H_2O_2 ; (C) Reaction temperature; (D) Reaction time; (E) Concentration of hemin; (F) The ratio of EpCAM aptamer to hemin; (G) Incubation time of hemin/EpCAM aptamer; (H) Incubation time of exosomes. Error bars indicated standard deviations across three independent replicates. A_0 and A were the

absorbance recorded in the absence and presence of exosomes at 652 nm. $\triangle A = A_0 - A$.