Supplementary data

Electrochemically functionalized graphene for highly sensitive

detection of nitrofurazone

Jiaxi Yin^a, Hairong Cui^b, Ling Lei^a, Kangbing Wu^{a*}

^a Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of

Chemistry and Chemical Engineering, Huazhong University of Science and

Technology, Wuhan 430074, China

^b College of Life Science, Wuchang University of Technology, Wuhan 430223, China

*Corresponding author. E-mail: kbwu@hust.edu.cn.

Tables of Content

Tables

Table S1. The ratios of different functional groups.

Table S2. The fitting parameters of the Randles equivalent circuits of GCE, GCE-1.4,GS and EGS-1.4.

Table S3. The comparison of electrochemical sensors for NFZ

Schemes

Scheme S1. The probable mechanism for the formations of oxygen-containing groups during electrochemical oxidation of graphene.

Figures

Fig. S1. Cyclic voltammograms of 5.0 mM $Ru(NH_3)_6Cl_3$ in 0.1 KCl on GCE (A), GS/GCE (B), EGS-1.0/GCE (C), EGS-1.4/GCE (D) and EGS-1.6/GCE (E) at scan rates of 25, 50, 75, 100, 125 and 150 mV s⁻¹.

Fig. S2. Rotating-disk voltammograms of 5.0 mM $Ru(NH_3)_6Cl_3$ in 0.10 M KCl on GCE(A), GS/GCE (B), EGS-1.0/GCE (C), EGS-1.4/GCE (D) and EGS-1.6/GCE (E) at rotating speed from 225 to 3600 rpm, scan rate: 100 mV s⁻¹.

Fig. S3. Plots of Q_f vs. $t^{1/2}$ during the forward step (a-d) and Q_r vs. f(t) during the reverse step (a'-d') for 1.0 μ M NFZ on GCE (A), GCE-1.4 (B), GS/GCE (C) and EGS-1.4/GCE (D); Inset: *Q*-*t* curves of 1.0 μ M NFZ in pH 7.0 phosphate buffer, pulse width: 0.25 s.

Sample	C-C%	-OH%	-COC%	-C=O%	O%
GS/GCE	74.58	15.27	5.33	4.82	25.42
EGS-1.0/GCE	54.14	31.16	7.16	7.54	45.86
EGS-1.4/GCE	40.75	43.25	8.07	7.92	59.25
EGS-1.6/GCE	39.34	30.63	16.43	13.60	60.66

Table S1. The ratios of different functional groups.

Sample		$R_{\rm ct}({ m k}\Omega)$	$C_{dl}(F)$ –	$Z_{ m w}\left(\Omega ight)$		
	$R_{\rm e}(\Omega)$			W-R	W-P	W-T
GCE	177.0	70.26	2.95×10-7	99963	0.50	0.30
GCE-1.4	180.1	60.26	1.56×10-6	77770	0.50	0.67
GS	341.6	26.66	8.98×10 ⁻⁶	66933	0.50	10.64
EGS-1.4	480.4	9.03	3.63×10 ⁻⁶	39532	0.50	1.95

Table S2. The fitting parameters of the Randles equivalent circuits of GCE, GCE-1.4,GS and EGS-1.4

 $R_{\rm e}$: solution resistance; $R_{\rm ct}$: charge transferred resistance; $Z_{\rm w}$: Warburg impedance element; W-R: coefficient of Warburg impedance; W-P is fixed as 0.5; W-T: the diffusion interpretation.

Sensing material	Detection signal	Linear range (µM)	Detection limit (nM)	Ref
DUT-67/T-PPY-2ª	reduction	9.08-354.08	8.7	1
Polyfurfural/rGO ^b	reduction	1-50	25	2
dsDNA ^c	reduction	2.5-37.5	80	3
PACBK ^d	reduction	0.2-15.0	28	4
CMWCNTs ^e	reduction	1.0-5000	64.5	5
Hollow MIL-101 ^f	oxidation	0.030-55	10	6
EGS-1.4/GCE	oxidation	0.01-0.8	2.1	This
	UNICATION	0.01-0.0	2.1	work

Table S3. The comparison of electrochemical sensors for NFZ

^aDUT-67/T-PPY-2: Zirconium-based mental organic frameworks/tubular poly pyrrole;

^b rGO : reduced graphene oxide; ^c dsDNA: double-stranded calf thymus DNA;

^d PACBK: poly(acid chrome blue K); ^e CMWCNTs: carboxyl multi-walled carbon

nanotubes; ^fMIL-101: chromium(III) terephthalate MOF.

Scheme S1. The probable mechanism for the formations of oxygen-containing groups during electrochemical oxidation of graphene.

Fig. S1. Cyclic voltammograms of 5.0 mM $Ru(NH3)_6Cl_3$ in 0.1 KCl on GCE (A), GS/GCE (B), EGS-1.0/GCE (C), EGS-1.4/GCE (D) and EGS-1.6/GCE (E) at scan rates of 25, 50, 75, 100, 125 and 150 mV s⁻¹.

Fig. S2. Rotating-disk voltammograms of 5.0 mM $Ru(NH_3)_6Cl_3$ in 0.10 M KCl on GCE(A), GS/GCE (B), EGS-1.0/GCE (C), EGS-1.4/GCE (D) and EGS-1.6/GCE (E) at rotating speed from 225 to 3600 rpm, scan rate: 100 mV s⁻¹.

Fig. S3. Plots of Q_{f} - $t^{1/2}$ during the forward step (a~d) and Q_{r} -f(t) during the reverse step (a'~d') for 1.0 μ M NFZ on GCE (A), GCE-1.4 (B), GS/GCE (C) and EGS-1.4/GCE (D); Inset: *Q*-*t* curves of 1.0 μ M NFZ in pH 7.0 phosphate buffer, pulse width: 0.25 s.

Sample treatment

Fish meat was purchased from a local market, minced using a meat grinder, and soaked into NFZ standard solution with different concentrations for 20 min. The spiked fish meat samples were then treated as follows. Fish sample (10.00 g) was added into a 50 mL centrifuge tube, then 20.00 mL mixed solvent of acetone and dichloromethane (v/v 3:7) as well as 10.0 g Na₂SO₄ were successively added. The mixture was ultrasonicated for 15 min, centrifuged at 4500 rpm for 5 min, and the supernatant was collected. The extraction process was repeated, and the combined supernatant was distilled to near dryness in 45°C water bath under reduced pressure using a rotary evaporator. Finally, 2.00 mL of 50% acetonitrile aqueous solution was added to the reconstitute extract, and the obtained sample solution was filtered through 0.45 μ m membranes for further detection.

References

- 1. H.X Wang., X.J Bo., M. Zhou, L.P. Guo, Anal. Chim. Acta, 2020, 1109, 1-8.
- F. Ye, J.Z Huang., Y.Q. Xu, Q. Zeng, J.M. Nan, L.S. Wang, *Anal. Lett.*, 2018, 51, 728-741.
- 3. Y.N. Ni, P. Wang, S. Kokot, Biosens. Bioelectron., 2012, 38, 245-251.
- 4. Y.F. Wang, Y. Guo, K.M. Pan, X.Y. Lin, Y.N. Ni, Chem. Afr., 2020, 3, 727-734.
- 5. B.S. He, X.Z. Dong, Anal. Methods, 2018, 10, 1372-1378.
- T. Gan, J.B. Li, L.P. Xu, Y.X. Yao, Y.M. Liu, J. Electroanal.Chem., 2019, 848, 113287.