Performance Evaluation of In-source Ion Activation Hardware and Collision-Induced Unfolding of Proteins and Protein Complexes on a Drift Tube Ion Mobility-Mass Spectrometer

Supplementary Information

Varun V. Gadkari^{1,a}, Brock R. Juliano¹, Christopher S. Mallis^{2,b}, Jody C. May³, Ruwan T. Kurulugama⁴, John C. Fjeldsted⁴, John A. McLean³, David H. Russell², Brandon T. Ruotolo^{1,#}

¹Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

²Department of Chemistry, Texas A&M University, College Station, Texas 77843, U.S.A.

³Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, U.S.A.

⁴Agilent Technologies Inc., Santa Clara, California 95051, U.S.A.

⁴Agilent Technologies Inc., Santa Clara, California 95051, U.S.A.

^aCurrent Affiliation: Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, U.S.A.

^bCurrent Affiliation: Shimadzu Scientific Instruments, Baltimore, Maryland 21201, U.S.A.

[#]Corresponding Author: bruotolo@umich.edu

Pg. 2	Table S1	Protein Standards
Pg. 3	Table S2	Optimized Instrument Parameters for Native Conditions

- Pg. 4 Table S3 CIUSuite2 Data Processing Parameters
- Pg. 5 Table S4 Inter-Laboratory R.M.S.D. Values for Ubiquitin, Myoglobin, Streptavidin, and BSA
- Pg. 6 Table S5 $D^{T}CCS_{N2}$ Values from this study, and referenced literature
- Pg. 7 Table S6 Production-grade Source RMSD, Feature and CIU50 Reproducibility of BSA
- Pg. 8 Table S6 Production-grade Source RMSD, Feature and CIU50 Reproducibility of SigmaMAb (IgG1)
- Pg.9 Figure S1 Complete Agilent 6560 DTIM-MS Instrument Schematic
- Pg. 10 Figure S2 Native Mass Spectra of Proteins in Inter-Laboratory study
- Pg. 11 Figure S3 CIU feature fits for ubiquitin, myoglobin, streptavidin, and SigmaMAb

 Table S1 – Protein Standards Used in This Work

Protein	Product Number	Molecular Weight (kDa)
SiLu Lite SigmaMAb Standard antibody	MSQC4	150
Bovine Serum Albumin	A2153	66.5
Streptavidin from Streptomyces Avidinii	S0677	52.8
Myoglobin from equine heart	M1182	17.6
Ubiquitin from bovine erythrocytes	U6253	8.6

					Native IgG
Region	Setting Name	Default	Native Ubiquitin	Native Myoglobin, Streptavidin, BSA	Production Grade
	Sample Infusion Rate (µL/min)	n/a	2-5	2-5	2-5
	Gas Temp (deg. C)	325	140	140	250
	Drying Gas (L/min)	5	5	5	5
	Nebulizer Pressure (psi)	20	35	20	20
urce	Sheath Gas Temp (deg. C)	275	140	140	140
So	Sheath Gas Flow (L/min)	10	8	11	11
	VCap, Capillary Voltage (V)	4000	3000	2500-3000	3000
	Nozzle Voltage (V)	2000	2000	2000	2000
	Fragmentor (V)	400	400	400	400
è	High Pressure Funnel (Torr)	4.00	4.80	4.80	4.10-4.30
ssur	Trapping Funnel (Torr)	3.80	3.80	3.80	3.80
Pre	Drift Tube (Torr)	3.95	3.95	3.95	3.95
Ę	Max Drift Time (ms)	n/a	90	90	90
uisitio	Trap Fill Time (µs)	20000	80000	80000	80000
Acq	Trap Release Time (µs)	150	1000	1000	1000
ő	In-Source CE (V)	20	10 - 200	10 - 450	10-410
netei	High Pressure Funnel Delta (V)	150	50	150	180
l Paran	High Pressure Funnel Radio Frequency (Vpp)	150	50	150	200
ncec	Trapping Funnel Delta (V)	180	160	164	164
Adva	Trapping Funnel Radio Frequency (Vpp)	150	180	150	200

Table S2 – Optimized Instrument Parameters for Native Conditions

Table S3 – CIUSuite2 Data Processing Parameters

		Ubiquitin +6	Myoglobin +8	Streptavidin +11	BSA +16	SigmaMAb
	Smoothing	Window: 5;	Window: 5;	Window: 5;	Window: 5;	Window: 7
port	Savitzky-Golay	(Default)	(Default)	(Default)	(Default)	
alız	Cron	10-200 V	10-240 V	100-440 V	10-410 V	10-410 V
Data	0100	10-20 nm ²	15-35 nm²	30-50 nm ²	40-70 nm ²	70-140 nm ²
	Plot Options	Default	Default	Default	Default	Default
	Mode	Standard	Standard	Standard	Standard	Standard
		(Default)	(Default)	(Default)	(Default)	(Default)
ing	Minimum Feature Length	5	2	4	2	4.6
Fitt	[x-axis] (Data Points)	(Default)	2	4	2	4-0
⁻ eature	Feature Width [y-axis] Allowed (nm ²)	1	1	1	1.5	2-4
	Max CV Gan	0	0	0	0	0
		(Default)	(Default)	(Default)	(Default)	(Default)
	Mode	Standard	Standard	Standard	Standard	Standard
5		(Default)	(Default)	(Default)	(Default)	(Default)
ittin		15	15	15		15
0 Fi	Trans. Region Padding	(Default)	(Default)	(Default)	15 (Default)	
3IU5						(Default)
0	Max CV Gap	0	0	0	0	0
		(Default)	(Default)	(Default)	(Default)	(Default)

	CIU Reproducibility RMSD (%)					
lon	<u>UM</u>	<u>TAMU</u>	<u>vu</u>	Inter-laboratory		
Ubiquitin +6	3.8 ± 1.4	2.5 ± 0.6	1.9 ± 0.4	18 ± 2		
Myoglobin +8	3.7 ± 0.6	2.9 ± 0.5	1.9 ± 0.2	37 ± 11		
Streptavidin +11	1.0 ± 0.1	2.3 ± 0.4	4.4 ± 0.4	20 ± 6		
BSA +16	2.2 ± 0.3	2.6 ± 0.3	3.0 ± 0.3	18 ± 4		

 Table S4 – Inter-Laboratory RMSD Values for Ubiquitin, Myoglobin, Streptavidin, and BSA

Table S5 – DTCCS _{N2}	Values from this study,	and referenced literature
--------------------------------	-------------------------	---------------------------

		^{DT} CCS _{N2} values reported for each protein (A ²) ^{a.}						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							% Bias ^{e.}	
Ubiquitin (+6)	F1 F2 F3 F4	1220±10 (3) 1470±20 (4) 1630±10 (5) 	 1730±10 (3)	1210±10 (3) 	1190±10 (3) 1350±10 (3) 1470±10 (3) 	1210 (3) 1410 (2) 1550 (2) 1730 (1)	1220±10 (4), 0.9% 1430±40 (4), 2.6% 1660±10 (3), 0.7% 1730±10 (2), 0.3%	0.5% 1.5% 6.5% 0.0%
Myoglobin (+8)	F1 F2 F3	1940±30 (5) 				1940 (1) 	1970±10 (4), 0.5% 2110±50 (3), 2.4% 2730±30 (4), 1.0%	1.6%
Streptavidi n (+11)	F1 F2 F3	 	3760±40 (3) 		 	3760 (1) 	3680±10 (4), 0.2% 3520±10 (3), 0.3% 4350±20 (4), 0.4%	2.1%
BSA (+16)	F1 F2 F3 F4 F5	 	4510±40 (3) 	 	4530±20 (3) 	4520 (2) 	4520±50 (4), 1.2% 5360±40 (3), 0.7% 5760±40 (4), 0.7% 6150±70 (4), 1.1% 6410±60 (4), 0.9%	0.0%
lgG1 (+26)	F1 F2 F3 F4 F5	 	 	 	 	 	7980±300 (4), 3.2% 9000±90 (2), 0.9% 10000±200 (4), 2.4% 10410±80 (4), 0.8% 10700±200 (3), 1.8%	

a. Number of measurements are indicated in the parenthesis. Percent RSDs, when reported, are converted to standard deviations in Å².

b. The CCS values reported for ammonium acetate solution are used for ubiquitin, and BSA, and the value measured in TEAA solution is used for streptavidin. For ubiquitin, only one CCS value is reported for the +6 charge state and it is assumed this is the fully-extended conformer. The streptavidin +11 and BSA +16 values are assumed to be the lowest-energy states. CCS measurements were obtained with nano-ESI on a traveling wave ion mobility-mass spectrometer.

c. The CCS values for ubiquitin are assumed to correspond to F1, F2, and F3 in this study. CCS measurements were obtained with nano-ESI.

d. The interlaboratory relative standard deviations are also provided at the end of each entry. In some cases, not all features were observed across all laboratories/hardware configurations.

e. The percent bias is referenced against the CCS values obtained in this study.

Production Grade RMSD Analysis				
Source Assembly	<u>RMSD (%)</u>			
Production Grade 1 (PG1)	2.4 ± 0.1			
Production Grade 2 (PG2)	2.3 ± 0.1			
Production Grade 3 (PG3)	2.6 ± 0.1			
Inter-Hardware Reproducibility	5 ± 1			
Average Feature DTCCS _{N2} M	easurements Across Production Grade Assemblies			
3 Replicates: 3 Averaged CIU Fir	ngerprints from PG1, PG2, PG3; R.S.D. in parentheses			
Feature #	<u>Average ^{DT}CCS_{N2} (nm²)</u>			
Feature 1	45.09 ± 0.02 (0.04%)			
Feature 2	53.8 ± 0.1 (0.2%)			
Feature 3	57.7 ± 0.1 (0.2%)			
Feature 4	61.6 ± 0.2 (0.3%)			
Feature 5	64.6 ± 0.2 (0.3%)			
Average CIU50 Measu	rements Across Production Grade Assemblies			
3 Replicates: 3 Averaged CIU Fir	ngerprints from PG1, PG2, PG3; R.S.D. in parentheses			
Transition #	Average CIU50 (V)			
CIU50-1	174 ± 5 (3%)			
CIU50-2	200.0 ± 0.4 (0.2%)			
CIU50-3	251 ± 7 (3%)			
CIU50-4	348 ± 3 (1%)			

Table S6 – Production-grade Source RMSD, Feature and CIU50 Reproducibility of BSA

Table S7 – Production Production-grade Source RMSD, Feature and CIU50 Reproducibility of SigmaMAb

	Production Grade RMSD Analysis								
Source		<u>RMSD (%)</u>							
Assembly	<u>+26</u>	<u>+27</u>	<u>+28</u>	+29	<u>+30</u>				
Production Grade 1 (PG1)	4.70 ± 0.30	2.22 ± 0.02	1.92 ± 0.09	2.20 ± 0.10	3.10 ± 0.30				
Production Grade 2 (PG2)	4.60 ± 0.10	2.80 ± 0.10	1.80 ± 0.20	2.00 ± 0.20	3.40 ± 0.40				
Production Grade 3 (PG3)	5.00 ± 0.40	2.70 ± 0.10	1.87 ± 0.09	2.20 ± 0.10	3.20 ± 0.10				
Inter-Hardware Reproducibility	4.40 ± 0.50	3.30 ± 0.70	2.60 ± 0.90	2.70 ± 0.40	3.50 ± 0.60				

Average Feature ^{DT}CCS_{N2} Measurements Across Production Grade Assemblies 3 Replicates: 3 Averaged CIU Fingerprints from PG1, PG2, PG3; R.S.D. in parentheses

	Average DTCCS _{N2} (nm ²)						
<u>Feature #</u>	<u>+26</u>	<u>+27</u>	<u>+28</u>	<u>+29</u>	<u>+30</u>		
Feature 1	81.90 ± 0.40 (0.5%)	83.60 ± 0.40 (0.5%)	85.17 ± 0.04 (0.05%)	87.23 ± 0.02 (0.05%)	90.29 ± 0.04 (0.04%)		
Feature 2	97.60 ± 0.40 (0.4%)	110.20 ± 0.40 (0.4%)	111.91 ± 0.01 (0.01%)	116.83 ± 0.01 (0.01%)	119.60 ± 0.50 (0.4%)		
Feature 3	107.00 ± 0.40 (0.4%)		115.47 ± 0.01 (0.01%)		126.90 ± 0.50 (0.4%)		

Average CIU50 Measurements Across Production Grade Assemblies

3 Replicates: 3 Averaged CIU Fingerprints from PG1, PG2, PG3; R.S.D. in parentheses

	Average CIU50 (V)						
Transition #	<u>+26</u>	<u>+27</u>	<u>+28</u>	<u>+29</u>	<u>+30</u>		
CIU50-1	201.6 ± 0.6 (0.3%)	211 ± 4 (2%)	203 ± 3 (1%)	200 ± 3 (2%)	191 ± 3 (2%)		
CIU50-2	260 ± 8 (3%)		335 ± 3 (1%)		373 ± 4 (1%)		

Figure S1 – Modified Agilent 6560 Drift Tube Ion Mobility Quadrupole Time-of-Flight Mass Spectrometer (DTIM-QTOF)

Full instrument diagram of the Modified Agilent 6560 DTIM-MS, now commercially referred to as the Agilent 6560C (diagram adapted from⁴). The capillary/high pressure funnel (4.8 torr) is modified to enable high-energy in-source activation of biomolecules for collision induced unfolding (CIU), as described in detail in the main text. After ion activation, the ions are accumulated in the trap funnel (3.80 torr) for a fixed amount of time (Trap Fill Time), and then released into the drift tube for mobility separation. The drift tube is operated at ambient temperature, 3.95 torr, and with an electric field of ~18 V/cm. After mobility separation, ions traverse the tandem MS stage of the instrument where they can be isolated by the quadrupole mass filter, further activated in the collision cell, and/or detected by the time-of-flight mass spectrometer. The firmware of this instrument is upgraded to extend the mass range of the time-of-flight mass spectrometer to 20,000 m/z.

Figure S2 – Native Mass Spectra of (A) Ubiquitin, (B) Myoglobin, (C) Streptavidin, and (D) Bovine Serum Albumin

Figure S3 – CIU feature maps. Here, the average map generated from three replicate runs is used for feature annotation, with "significant features" (F1, F2, etc.) determined using specific constraints for the CIU step size and allowable CCS tolerance. These are (A) ubiquitin (+6), 5 steps minimum, 1 nm² width tolerance; (B) myoglobin (+8), 2 steps, 1 nm²; (C) streptavidin (+11), 4 steps 1 nm²; (D) BSA (+16), 2 steps, 1.5 nm².

Figure S4 – CIU feature Plots of SigmaMAb. The average CIU fingerprint generated from three replicate runs is used for feature annotation, with "significant features" (F1, F2, etc.) determined using specific constraints for the CIU step size and allowable CCS tolerance. These are (A) 26+, 6 steps minimum, 3.5 nm² width tolerance; (B) 27+, 6 steps minimum, 3.5 nm² width tolerance; (C) 28+, 4 steps minimum, 2 nm² width tolerance; (E) 30+, 4 steps minimum, 2 nm² width tolerance; (E) 30+, 4 steps minimum, 2 nm² width tolerance;

References

- (1) May, J. C.; Jurneczko, E.; Stow, S. M.; Kratochvil, I.; Kalkhof, S.; McLean, J. A. Conformational Landscapes of Ubiquitin, Cytochrome c, and Myoglobin: Uniform Field Ion Mobility Measurements in Helium and Nitrogen Drift Gas. International Journal of Mass Spectrometry 2018, 427, 79–90. https://doi.org/10.1016/j.ijms.2017.09.014.
- (2) Stiving, A. Q.; Vanaernum, Z. L.; Busch, F.; Harvey, S. R.; Sarni, S. H.; Wysocki, V. H. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. *Analytical Chemistry*. American Chemical Society January 2, 2019, pp 190–209. https://doi.org/10.1021/acs.analchem.8b05071.
- Zheng, X.; Kurulugama, R. T.; Laganowsky, A.; Russell, D. H. Collision-Induced Unfolding Studies of Proteins and Protein Complexes Using Drift Tube Ion Mobility-Mass Spectrometer. *Analytical Chemistry* 2020, *92* (10), 7218–7225. https://doi.org/10.1021/acs.analchem.0c00772.
- (4) Gadkari, V. v.; Ramírez, C. R.; Vallejo, D. D.; Kurulugama, R. T.; Fjeldsted, J. C.; Ruotolo, B. T. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. *Analytical Chemistry* **2020**, *92* (23), 15489–15496. https://doi.org/10.1021/acs.analchem.0c03372.