Supporting Information

Of

Robust molecularly imprinted electrochemiluminescence sensor based on Ni-Co nanoarray for sensitive detection of spiramycin

Yunxiao Li ${ }^{\text {a }}$, Jiwei Xu^{a}, Rongqi Cheng ${ }^{\text {b,c }}$, Jinghui Yang ${ }^{\mathrm{a}}$, ChenChen $\mathrm{Li}^{\text {a,b }}$, Yingchun Liu ${ }^{\text {a }}$, Rui $\mathrm{Xu}^{\text {a }}$, Qin Wei ${ }^{\text {b }}$ and Yong Zhang*a, ${ }^{\text {b }}$
${ }^{\text {a }}$ Provincial Key Laboratory of Rural Energy Engineering in Yunnan, Yunnan Normal University, Kunming 650500, China. Email: yongzhang7805@126.com

${ }^{\mathrm{b}}$ Key Laboratory of Interfacial Reaction \& Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
${ }^{\text {c }}$ Inspection and Testing Center of Liangshan County, Jining 272600, China.

Fig. S1 (A, B, C, D) EDS Elemental analysis of Ni-Co LDH samples

Fig. S2 (A) XRD patterns of PTCA. (B) UV-vis absorption spectrum of PTCA. (C) Fluorescence emission spectrum of PTCA.

Fig. S3 ECL intensity-time curves of different modified electrodes: (a) PTCA/N$\mathrm{Ti}_{3} \mathrm{C}_{2} / \mathrm{Ni}-\mathrm{Co} \mathrm{LDH} / \mathrm{CC}$. (b) Eluted PTCA/N-Ti $\mathrm{C}_{2} / \mathrm{Ni}-\mathrm{Co} \mathrm{LDH/CC}. \mathrm{(c)} \mathrm{MIP/PTCA/N-}$ $\mathrm{Ti}_{3} \mathrm{C}_{2} / \mathrm{Ni}-\mathrm{Co} \mathrm{LDH} / \mathrm{CC}$. (d) Rebinding MIP/PTCA/N-Ti ${ }_{3} \mathrm{C}_{2} / \mathrm{Ni}-\mathrm{Co} \mathrm{LDH} / \mathrm{CC}$.

Fig. S4 (A) The effect of pH on ECL intensity. (B) The effect of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ concentration on ECL intensity. (C) Effect of incubation time of MIP on ECL intensity. (D) The effect of elution time of template molecules on ECL intensity. Error bars $=\mathrm{SD}(\mathrm{n}=3)$

Fig. 55 (A) Selectivity of MIECL sensors for different detectors: (a) Blank sample. (b) SPI. (c) SPI \& Tylosin. (d) SPI \& Azithromycin. (e) SPI \& erythromycin. (f) SPI \& josamycin. (B)
Reproducibility of six MIECL sensors. (C) Storage Stability of MIECL Sensors. Error bars $=$ SD

$$
(\mathrm{n}=3)
$$

Table S1. Result and recovery of SPI measured by MIECL sensor

Chicken sample	Detected $\left(10^{-6} \mathrm{M}\right)$	Spiked $\left(10^{-6} \mathrm{M}\right)$	Found $\left(10^{-6} \mathrm{M}\right)$	RSD (\%)	Recovery (\%)
Sample 1	0.24	0.10	0.3413	3.75	101.3
Sample 2	0.24	0.30	0.5381	4.06	99.37
Sample 3	0.24	0.60	0.8295	2.61	98.25

