SUPPORTING INFORMATION : Experimental section, Fig. S1–S3 and Tables S1-S2 Fully Integrated On-line strategy for Highly Sensitive Proteome Profiling of 10-500 Mammalian Cells

Yun Yang, ^{#,a,b,c} Suhong Sun,^{#,d} Shunji He,^d Chengmin Liu,^e Changying Fu,^a Min Tang,^f Chao Liu,^f Ying Sun,^e Henry Lam,^{b,*} Zhiyong Liu,^{d,*} Ruijun Tian^{a,*}

^aDepartment of Chemistry, School of Science, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China ^bDepartment of Chemical and Biological Engineering, The Hong Kong University of Science &Technology, Clear Water Bay, Kowloon, Hong Kong;

^cSouth China Institute of Biomedicine, No. 83 Ruihe Road, GuangZhou 510535, China ^dInstitute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;

^eDepartment of Biology, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China

^fBeijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China; and Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology

[#]Contributed equally

Corresponding Authors

Ruijun Tian E-mail: tianrj@sustech.edu.cn Zhiyong Liu E-mail: zhiyongliu@ion.ac.cn Henry Lam E-mail: kehlam@ust.hk

Contents of SI materials

NanoLC-MS/MS Analysis on Q Exactive HF-X and Orbitrap Fusion	S 3
NanoLC-MS/MS Analysis on timsTOF Pro	S 3
Table S1	S 4
Table S2	S 6
Fig. S1	S 7
Fig. S2	S8
References	S 9

Materials and methods

NanoLC-MS/MS Analysis on Q Exactive HF-X and Orbitrap Fusion

The nanoLC and MS conditions on Q Exactive HF-X and Orbitrap Fusion were the same as previously reported.¹ The data of **Fig. 2** and **Fig. 3** were collected on a Q Exactive HF-X, while the data of **Fig. S1** were collected on a Orbitrap Fusion.

NanoLC-MS/MS Analysis on timsTOF Pro

PierceTM HeLa digest standard (PN 88329) was purchased from Thermo Fisher Scientific. A nanoElute UHPLC system was online coupled to a timsTOF Pro mass spectrometer with a CaptiveSpray nano-electrospray ion source (Bruker Daltonics). All columns were heated at 50°C using an integrated column oven (Sonation GmbH, Germany). Mobile phases A and B were water and acetonitrile with 0.1% FA, respectively. The flow rate was 250 nL/min and a segmented 110-min gradient was: 2 %–22 % (v/v) buffer B in 75 min, 22%–35% (v/v) buffer B for 15 min, 35%–80% (v/v) buffer B for 10 min, followed by a 10 min wash from 36% to 80% (v/v) buffer B. RCPR after processing hair cells was online connected to conventional 100 µm I.D. x 20 cm capillary columns via a zero dead volume PicoClear union (New Objective).

Optimized DDA parameters on timsTOF Pro are the following: MS range m/z 300–1 500 was scanned in positive electrospray mode; The mass spectrometer collected ion mobility MS spectra over $1/k_0$ of 0.75 to 1.30, and then performed 4 cycles of parallel accumulation-serial fragmentation (PASEF) MS/MS with a target intensity of 5 000 and a threshold of 500. The ramp time was 200 ms and total cycle time was 1.03 s. Only doubly or triply charged features were selected to trigger MS/MS scans; Peaks were dynamically excluded within 0.30 min except that when current intensity/previous intensity was over 3.0.

Cell	Cell type	Number of identified	Sample preparation	Year	References
number		protein groups	method	published	
10	HeLa	1 500	nanoPOTS ^a	2018	2
	HeLa	1 461	autoPOTS ^b	2021	3
~25	HeLa	$\sim 1 800$	μPOTS ^c	2018	4
50	MCF-7	1 017	In-solution	2014	5
~56	HeLa	~ 2 200	μPOTS	2018	4
100	HeLa	1 360	OAD chip	2018	6
	DLD-1	635	iPAD-100 ^d	2015	7
	THP-1	549	In-solution	2017	8
	Jurkat T	1 226	DMF-SP3 ^e	2019	9
	HeLa	644	FAST ^f	2021	10
	MCF-7	1 895	micro-FASP ^g	2020	11
~130	B or T	1 095	autoPOTS	2021	3
	lymphocytes				
140	HeLa	3 000	nanoPOTS	2018	2
~150	HeLa	2 679	autoPOTS	2021	3
91-454	human	average: 2 676	nanoPOTS	2018	2
	pancreatic cell				
500	DLD-1	1 060	High temperature	2015	7
			trypsin digestion		
	MCF-7	187	Acetone precipitation	2010	12
	HeLa	905	FASP ^h	2011	13
	Jurkat T	2 467	on-chip SP3	2019	9
	HeLa	1 673	FAST	2021	10
~500	HeLa	3 347	autoPOTS	2021	3
650	HeLa	5 805	nanoPOTS and	2018	14
			prefractionation		
1 000	MCF-7	271	Acetone precipitation	2010	12
	HeLa	1 536	FASP	2011	13
	Human	1 000	In-solution	2014	15
	macrophage				
	THP-1	911	In-solution	2017	8
	U2OS	829	In-solution	2019	16
	osteosarcoma				
	MCF-7	1 895	micro-FASP	2020	11
~1 440	MCF-7	3 402	AFA ⁱ assisted cell	2015	17
4.000			lysis		
1 900	Rat brain tissue	1 500	On-tissue micro- digestion	2013	18

 Table S1. Major published proteomic methods for profiling 10-2 000 mammalian cells.

2 (000	HEK 239T		1 270	SISPROT ^j	2016	19
~2	000	Human	breast	1 426	CAAR ^k -based	2019	20
		cancer			procedure		
а.	nanoPC	DTS: nanodroj	plet proce	ssing in one-pot for tra	ce samples		
b.	autoPO	TS: automate	d prepara	tion in one pot for trace	e samples		
с.	μΡΟΤS	: microdrople	t processi	ng in one pot for trace	samples		
d.	iPAD-1	00: integrated	l proteom	e analysis device for 10	00 cells		
е.	DMF: d	ligital microfl	uidics				

- *f.* FAST: fully automated sample treatment
- g micro-FASP: miniaturized filter-aided sample preparation
- ^{h.} FASP: filter-aided sample preparation
- ^{*i.*} AFA: Adaptive Focused AcousticsTM
- j. SISPROT: simple and integrated proteomics sample preparation technology
- ^{k.} CAAR: citric acid antigen retrieval

Parameters	Original	Optimized
Mobilogram peak detection-		
intensity threshold	5 000	4 000
Mass range	100-1 700	300-1 500
$1/k_0$	0.60-1.60	0.75-1.30
Ramp time	166	200
Charge range	0-5	2-3
No. of PASEF MS/MS scans	10	4
Total cycle time	1.89 s	1.03 s
Target intensity	20 000	5 000
MS2 intensity threshold	1 000	500
Release after (min)	0.40	0.30
Current intensity/previous		
intensity	4.00	3.00

 Table S2. Major changes of DDA parameters on timsTOF Pro during optimization.

Fig. S1. (A) Identified protein groups and peptide groups from 10 ng of 293T total cell lysate processed by 2-frit mixed-mode RCPR ($10 \mu m C18$). Error bars indicate standard deviations from three technical replicates. (B) Venn diagram of protein groups identified by this type of mixed-mode RCPR.

Fig. S2. Venn diagrams of label-free quantified protein groups from 10 (A), 100 (B), and 500 (C) FACS-sorted 293T cells.

References

- 1 X. Ye, Y. Yang, J. Zhou, L. Xu, L. Wu, P. Huang, C. Feng, P. Ke, A. He, G. Li, Y. Li, Y. Li, H. Lam, X. Zhang and R. Tian, *Anal. Chim. Acta*, 2021, **1173**, 338672–338682.
- Y. Zhu, P. D. Piehowski, R. Zhao, J. Chen, Y. Shen, R. J. Moore, A. K. Shukla, V. A. Petyuk, M. Campbell-Thompson, C. E. Mathews, R. D. Smith, W. J. Qian and R. T. Kelly, *Nat. Commun.*, 2018, 9, 1–10.
- Y. Liang, H. Acor, M. A. McCown, A. J. Nwosu, H. Boekweg, N. B. Axtell, T. Truong, Y. Cong,
 S. H. Payne and R. T. Kelly, *Anal. Chem.*, 2021, 93, 1658–1666.
- 4 K. Xu, Y. Liang, P. D. Piehowski, M. Dou, K. C. Schwarz, R. Zhao, R. L. Sontag, R. J. Moore, Y. Zhu and R. T. Kelly, *Anal. Bioanal. Chem.*, 2019, 411, 4587–4596.
- 5 J. Sun, G. L. Zhang, S. Li, A. R. Ivanov, D. Fenyo, F. Lisacek, S. K. Murthy, B. L. Karger and V. Brusic, *BMC Genomics*, 2014, 15, S1–S10.
- 6 Z. Y. Li, M. Huang, X. K. Wang, Y. Zhu, J. S. Li, C. C. L. Wong and Q. Fang, *Anal. Chem.*, 2018, 90, 5430–5438.
- 7 Q. Chen, G. Yan, M. Gao and X. Zhang, *Anal. Chem.*, 2015, **87**, 6674–6680.
- 8 K. Kasuga, Y. Katoh, K. Nagase and K. Igarashi, *Proteomics*, 2017, 17, 1–7.
- 9 J. Leipert and A. Tholey, *Lab Chip*, 2019, **19**, 3490–3498.
- 10 H. Yuan, Z. Dai, X. Zhang, B. Zhao, H. Chu, L. Zhang and Y. Zhang, *Sci. China Chem.*, 2021, 64, 313–321.
- 11 Z. Zhang, K. M. Dubiak, P. W. Huber and N. J. Dovichi, Anal. Chem., 2020, 92, 5554–5560.
- 12 N. Wang, M. Xu, P. Wang and L. Li, *Anal. Chem.*, 2010, **82**, 2262–2271.
- 13 J. R. Wiśniewski, P. Ostasiewicz and M. Mann, J. Proteome Res., 2011, 10, 3040–3049.
- 14 M. Dou, Y. Zhu, A. Liyu, Y. Liang, J. Chen, P. D. Piehowski, K. Xu, R. Zhao, R. J. Moore, M. A. Atkinson, C. E. Mathews, W. J. Qian and R. T. Kelly, *Chem. Sci.*, 2018, 9, 6944–6951.
- 15 M. Brioschi, S. Eligini, M. Crisci, S. Fiorelli, E. Tremoli, S. Colli and C. Banfi, *Anal. Bioanal. Chem.*, 2014, 406, 2817–2825.
- 16 R. Wu, S. Xing, M. Badv, T. F. Didar and Y. Lu, *Anal. Chem.*, 2019, **91**, 10395–10400.
- 17 S. Li, B. D. Plouffe, A. M. Belov, S. Ray, X. Wang, S. K. Murthy, B. L. Karger and A. R. Ivanov, *Mol. Cell. Proteomics*, 2015, 14, 1672–1683.
- 18 J. Quanico, J. Franck, C. Dauly, K. Strupat, J. Dupuy, R. Day, M. Salzet, I. Fournier and M. Wisztorski, J. Proteomics, 2013, 79, 200–218.
- 19 W. Chen, S. Wang, S. Adhikari, Z. Deng, L. Wang, L. Chen, M. Ke, P. Yang and R. Tian, *Anal. Chem.*, 2016, 88, 4864–4871.
- 20 F. Dewez, M. Martin-Lorenzo, M. Herfs, D. Baiwir, G. Mazzucchelli, E. De Pauw, R. M. A. Heeren and B. Balluff, *Anal. Bioanal. Chem.*, 2019, 411, 5647–5653.