Supporting information

Chiral 8-AminoBODIPY-based fluorescent probes with site selectivity for the quantitative detection of HSA in biological samples

Thekke Kunhalath Jithinraj, ${ }^{\text {a }}$ Velluvakandi Chaluvalappil Saheer ${ }^{\text {b }}$ and Lakshmi Chakkumkumarath *a

${ }^{\text {a }}$ Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
E- mail: lakshmic@nitc.ac.in
${ }^{\mathrm{b}}$ Department of Chemistry, Government College Kasaragod, Vidyanagar, Kasaragod-671123, Kerala, India.
Current affiliation : Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE.

Contents

Table S1

2

Fig. S1-S3 3
Fig. S4 - S5 4
Fig. S6-S7 5
Fig. S8 - S9 6
Fig. S10-S11 7
Fig. S12-S13 8
Fig.S14-S15 9
Fig. S16-S17 10
Fig. S18-S19 11
Fig. S20-S21 12
Fig. S22 - S23 13
Table S2-S3 14
Table S4 15
Table S5 16
Fig. S24-S25 17
Fig. S26-S27 \& Table S6 18
${ }^{1}$ H NMR 19 - 20
${ }^{13}$ C NMR 20-21
HRMS spectra 22-24

Table S1 Photophysical data of R-PEB, S-PEB and BB.

Compound	Solvent	$\begin{gathered} \lambda_{\mathrm{abs}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \varepsilon_{\max } \\ \left(\mathbf{1 0}^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \Delta v \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\Phi^{\text {a }}$	$\begin{aligned} & \tau^{\mathrm{b}} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{gathered} k_{f l} l^{c} \\ \left(10^{8} \mathbf{s}^{-1}\right) \end{gathered}$	$\begin{gathered} k_{n r}{ }^{\mathbf{d}} \\ \left(10^{9} \mathbf{s}^{-1}\right) \end{gathered}$
R-PEB	Chloroform	415	2.80	459	2309.89	0.96	-	-	-
	Toluene	411	2.92	462	2685.87	0.71	2.52	2.82	0.12
	Ethanol	405	2.86	449	2419.64	0.11	-	-	-
	Methanol	404	2.69	447	2381.11	0.06	1.44	0.42	0.65
	DMSO	403	2.60	446	2392.37	0.07		-	-
	PBS Buffer	399	2.30	465	3557.28	0.03	0.79	0.38	1.23
	HSA (5 eq) solution	403	2.38	429	1752.63	0.26	3.80	0.68	0.19
S-PEB	Chloroform	415	2.80	459	2309.89	1	-	-	-
	Toluene	411	2.92	462	2685.87	0.64	2.90	2.20	0.124
	Ethanol	405	2.86	449	2419.64	0.11	-	-	-
	Methanol	404	2.69	447	2381.11	0.06	1.44	0.42	0.65
	DMSO	403	2.60	446	2392.37	0.07	-	-	-
	PBS Buffer	399	2.30	465	3557.28	0.03	0.78	0.38	1.24
	HSA (5 eq) solution	404	2.38	433	1752.63	0.18	4.12	0.44	0.19
BB	Chloroform	412	2.89	455	2293.82	1	-	-	-
	Toluene	409	3.05	453	2374.82	0.84	3.45	2.43	0.05
	Ethanol	403	2.98	435	1825.39	0.19	-	-	-
	Methanol	402	2.95	436	1939.84	0.09	0.82	1.09	1.11
	DMSO	401	2.63	435	1949.15	0.10	-	-	-
	PBS Buffer	396	2.44	460	3513.39	0.04	1.29	0.31	0.74
	HSA (5 eq) solution	402	2.56	430	1681.84	0.25	4.21	0.59	0.18

(a) Relative fluorescence quantum yield was obtained using ethanol solution of coumarin $1(\Phi=0.75)$ as reference. (b) $\boldsymbol{\tau}$ (average lifetime) $=\sum \boldsymbol{\alpha}_{\mathrm{i}} \boldsymbol{\tau}_{\mathrm{i}}{ }^{2} / \sum \boldsymbol{\alpha}_{\mathrm{i}} \boldsymbol{\tau}_{\mathrm{i}}$, where $\boldsymbol{\alpha}_{\mathrm{i}}$ and $\boldsymbol{\tau}_{\mathrm{i}}$ are the relative amplitude and lifetime value of $\mathrm{i}^{\text {th }}$ lifetime component. (c) \mathbf{k}_{fl} (radiative rate constant) $=\boldsymbol{\Phi} / \boldsymbol{\tau}$. (d) \mathbf{k}_{nr} (nonradiative rate constant) $=[\mathbf{1 - \Phi}] / \boldsymbol{\tau}$.

Fig. S1 Cyanine and hemicyanine resonance forms of 8-aminoBODIPY.

Fig. S2 Absorption spectra of (a) S-PEB $[6.7 \mu \mathrm{M}]$ and fluorescence spectra of (b) S-PEB $[1 \mu \mathrm{M}]$ in solvents with different empirical polarity parameter, $E_{\mathrm{T}}(30) ; \lambda_{\mathrm{ex}}=385 \mathrm{~nm}$.

Fig. S3 Absorbance spectra of (a) $\mathbf{B B}[6.7 \mu \mathrm{M}]$ and fluorescence spectra of (b) $\mathbf{B B}[1 \mu \mathrm{M}]$ in solvents with different empirical polarity parameter $E_{\mathrm{T}}(30) ; \lambda_{\mathrm{ex}}=385 \mathrm{~nm}$.

Fig. S4 Fluorescence spectra of $1 \mu \mathrm{M}$ solutions of (a) R-PEB, (b) S-PEB and (c) BB on increasing the percentages of toluene in methanol. Percentage of toluene is shown in the graph; $\lambda_{\mathrm{ex}}=385 \mathrm{~nm}$.

Fig. S7 Å Ábsorption spectra of $6.7 \mu \mathrm{M}$ solutions of (a) R-PEB, (b) S-PEB and (c) BB in the presence of HSA (5 eq) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$).

Fig. S5 Fluorescence spectra of $1 \mu \mathrm{M}$ solutions of (a) R-PEB, (b) S-PEB and (c) BB on increasing the percentage of glycerol in water. Percentage of glycerol is shown in the graph; $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S6 Fluorescence response of $1 \mu \mathrm{M}$ solutions of (a) S-PEB and (b) BB on addition of HSA (5 eq) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$ (S-PEB), 355 nm (BB).

Fig. S8 Fluorescence spectra of S-PEB $(2 \mu \mathrm{M})$ on addition of HSA ($0-50 \mathrm{eq}$) in PBS buffer (1 mM , pH 7.4); inset- linear relationship between concentration of HSA and the corresponding fluorescence intensity at 433 nm (values are presented as mean $\pm \mathrm{SD}, \mathrm{n}=3$); $\lambda_{\mathrm{ex}}=380 \mathrm{~nm}$.

Fig. S9 Fluorescence spectra of $\mathbf{B B}(2 \mu \mathrm{M})$ on addition of HSA ($0-50 \mathrm{eq}$) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH}$ 7.4); inset- linear relationship between concentration of HSA and the corresponding fluorescence intensity at 430 nm (values are presented as mean $\pm S D, n=3$); $\lambda_{\mathrm{ex}}=375 \mathrm{~nm}$.

Fig. S10 Fluorescence decay profiles of (a) R-PEB [5 $\mu \mathrm{M}$], (b) S-PEB [5 $\mu \mathrm{M}$] and (c) $\mathbf{B B}[5 \mu \mathrm{M}]$ in methanol, toluene, water and HSA solution (5 eq). Data were recorded at their respective $\lambda_{\text {em }}$ using 330 nm nanoLED excitation source. IRF -instrument response function.

Fig. S11 Binding curves of (a) R-PEB [$2 \mu \mathrm{M}$], (b) S-PEB ($2 \mu \mathrm{M}$) and (c) BB $(2 \mu \mathrm{M})$ with HSA ($0-$ 50 eq) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$); $\lambda_{\mathrm{ex}}=380 \mathrm{~nm}$ (R-PEB, S-PEB), 375 nm (BB). (values are presented as mean $\pm \mathrm{SD}, \mathrm{n}=3$)
a)

c)

b)

Fig. S12 Time-dependent fluorescence of $1 \mu \mathrm{M}$ solution of (a) R-PEB, (b) S-PEB and (c) BB on addition of HSA (5 eq) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S13 Fluorescence response of $1 \mu \mathrm{M}$ PBS solution of (a) R-PEB, (b) S-PEB and (c) BB in the presence of various proteins and thiols (5 eq); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S14 Fluorescence response of $1 \mu \mathrm{M}$ PBS solution of (a) R-PEB, (b) S-PEB and (c) BB in the presence of various cations and anions (5 eq); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.
a)

c)

Fig. S15 Fluorescence response of $1 \mu \mathrm{M}$ PBS solution of (a) R-PEB, (b) S-PEB and (c) BB in the presence of various chelates, reductants and surfactants (5 eq); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S16 Fluorescence spectra of R-PEB ($1 \mu \mathrm{M}$) on addition of other representative proteins ($0-20$ eq.), (a) globulins, (b) lysozyme, (c) trypsin and (d) pepsin in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$), $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S17 Fluorescence spectra of S-PEB ($1 \mu \mathrm{M}$) on addition of other representative proteins ($0-20$ eq.), (a) globulins, (b) lysozyme, (c) trypsin and (d) pepsin in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$), $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. $\mathbf{S 1 8}$ Fluorescence spectra of R-PEB in the presence of various interfering species [proteins \& thiols (globulins, transferrin, IgG, lysozyme, pepsin, trypsin, DTT, GSH, HCy, cysteine), cations \& anions (Fe^{2+}, $\left.\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{S}^{2-}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}^{2-}\right)$, chelates, reductants \& surfactants (EDTA, oxalic acid, ethylenediamine, citric acid, sodium sulfite, sodium ascorbate, CTAB, SDS, triton X-100, sulfobetaine-14)] (1 eq) and HSA (1 eq) in PBS buffer (1 mM, $\mathrm{pH} 7.4) ; \lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S19 Fluorescence spectra of S-PEB in the presence of various interfering species [proteins \& thiols (globulins, transferrin, IgG, lysozyme, pepsin, trypsin, DTT, GSH, HCy, cysteine), cations \& anions (Fe ${ }^{2+}$, $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{S}^{2-}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}$), chelates, reductants \& surfactants (EDTA, oxalic acid, ethylenediamine, citric acid, sodium sulfite, sodium ascorbate, CTAB, SDS, triton X-100, sulfobetaine-14)] (1 eq) and HSA (1 eq) in PBS buffer (1 $\mathrm{mM}, \mathrm{pH} 7.4) ; \lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.
a)

c)

b)

Fig. S20 Fluorescence response of $1 \mu \mathrm{M}$ solution of (a) R-PEB, (b) $\mathbf{S}-\mathbf{P E B}$, (c) $\mathbf{B B}$ at different pH in PBS buffer (1 mM); $\lambda_{e x}=360 \mathrm{~nm}$.

Fig. S21 Albumin evaluation results of three unknown serum samples (values are presented as mean \pm SD, $\mathrm{n}=3$) using R-PEB $[2 \mu \mathrm{M}]$ in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$) and clinical BCG test. (Concentration of HSA in standard serum sample based on R-PEB was set as same as that of BCG method.)

Fig. S22 (a) Fluorescence spectra of S-PEB $(2 \mu \mathrm{M}$ in 1 mM PBS buffer at pH 7 on adding increasing amounts of standard serum $(0-10 \mu \mathrm{~L})$; (b) the corresponding calibration curve (values are presented as mean $\pm \mathrm{SD}, \mathrm{n}=3$); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S23 Albumin evaluation results of three unknown serum samples (values are presented as mean \pm SD, $n=3$) using S-PEB $[2 \mu \mathrm{M}]$ in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$) and clinical BCG test. (Concentration of HSA in standard serum sample based on S-PEB was set as same as that of BCG method.)

HSA quantification in serum

Concentration of HSA in serum samples were determined based on the equation $\mathbf{C}_{\mathbf{H S A}} / \mathbf{C}_{\text {STD }}=\mathbf{F} / \mathbf{F}_{\text {STD }}$, where $\mathbf{C}_{\text {HSA }}$ and $\mathbf{C}_{\text {STD }}$ are the concentration of HSA in unknown and standard samples, respectively. \mathbf{F} and $\mathbf{F}_{\text {STD }}$ are the corresponding fluorescence intensities of R-PEB/S-PEB on the addition of a particular volume of serum (here $5 \mu \mathrm{~L}$) from the unknown and standard samples. A representative example for calculation is given in the following table.

Method	$\mathbf{C}_{\text {STD }}(\mathbf{g} / \mathbf{d L})$	$\mathbf{F}_{\text {STD }}(\mathbf{n m})$	$\mathbf{F}(\mathbf{n m})$	$\mathbf{C}_{\text {HSA }}(\mathbf{g} / \mathbf{d L})$
R-PEB	4.3	501	$493($ at 429 nm$)$	4.23
S-PEB	4.3	386	374 (at 433 nm$)$	4.16

Details of accuracy, robustness \& precision

Accuracy and recovery

Accuracy was determined by collecting data for three different serum samples $(\mathrm{n}=3)$ and the value is expressed as percentage of recovery between the mean concentrations of HSA recovered and that of the original. The average recoveries and percentage relative error for R-PEB and S-PEB based measurements of three independent samples are presented in Table S2.

Table S2 Determination of accuracy and percentage recovery.

Sample	[HSA] as obtained using			\% Average recovery (r)		\% Relative error (δ)	
	BCG method (g / dL), ($\mathrm{C}_{\mathrm{BCG}}$)	$\begin{gathered} \text { R-PEB } \\ (\mathrm{g} / \mathrm{dL}) \\ \left(\mathrm{C}_{\mathrm{HSA}}\right) \\ \text { (Mean } \pm \mathrm{SD}, \mathrm{n}=3) \end{gathered}$	S-PEB (gdL) $\begin{gathered} \left(\mathbf{C}_{\mathbf{H S A}}\right) \\ (\text { Mean } \pm \mathrm{SD}, \mathrm{n}=3) \end{gathered}$	R-PEB	S-PEB	R-PEB	S-PEB
1	4.2	4.27 ± 0.0286	4.18 ± 0.0464	101.6	99.5	1.6	0.5
2	4.0	4.15 ± 0.0047	4.17 ± 0.0125	103.7	104.2	3.7	4.2
3	4.1	4.18 ± 0.0245	4.23 ± 0.0339	101.9	103.1	1.9	3.1

$$
\begin{gathered}
\% \text { Average recovery }(\mathrm{r})=100 * \mathrm{C}_{\mathrm{HSA}} / \mathrm{C}_{\mathrm{BCG}} \\
\% \text { Relative error }(\delta)=100 *\left(\mathrm{C}_{\mathrm{HSA}}-\mathrm{C}_{\mathrm{BCG}}\right) / \mathrm{C}_{\mathrm{BCG}}
\end{gathered}
$$

Robustness

Robustness of the method was validated by performing measurements at slightly different emission wavelengths for detection and quantification. All parameters except the wavelength were made constant during the process. Seven independent measurements $(n=7)$ of a selected serum sample was done at each of these wavelengths. The statistical comparison was done with Friedman analysis and no significant difference was found between the results $(p=0.1017>p=0.05$ in the case of R-PEB and $\mathrm{p}=0.8668>\mathrm{p}=0.05$ in the case of $\mathbf{S}-\mathbf{P E B})($ Table S3).

Table S3 Robustness data of the method.

[HSA] (g/dL) BCG method	Wavelength (nm)	Found, [HSA] (g/dL)	\% RSD
		$\begin{gathered} \text { RPEB } \\ (\text { Mean } \pm \text { SD, } n=7) \end{gathered}$	
4.2	429	4.27 ± 0.0228	0.53
	427	4.24 ± 0.0246	0.58
	431	4.28 ± 0.0094	0.22
	Friedman analysis: $\mathrm{p}=0.1017>\mathrm{p}=0.05$		
[HSA] (g/dL) BCG method	Wavelength (nm)	Found, [HSA] (g/dL)	\% RSD
		SPEB (Mean \pm SD, $n=7$)	
4.2	433	4.20 ± 0.0194	0.46
	431	4.22 ± 0.0275	0.65
	435		0.44
	Friedman analysis: $\mathrm{p}=0.8668>\mathrm{p}=0.05$		

Precision

In order to find the precision of the method, three different serum samples were analysed in three independent runs in the same day (intra-day precision) and on three consecutive days (inter-day precision) The precision of the analysis method was determined by calculating the relative standard deviation (RSD \%). The RSD values obtained are presented in Table S4.

Table S4 Determination of intra-day and inter-day precision of the method

R-PEB Intra-day precision				Inter-day precision		
$\begin{gathered} {[\mathrm{HSA}]} \\ (\mathrm{g} / \mathrm{dL}) \\ \text { BCG } \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Found, }[\mathbf{H S A}](\mathbf{g} / \mathbf{d L}) \\ (\text { Mean } \pm \text { SD, } \mathrm{n}=3) \end{gathered}$	\% RSD	\pm SE	$\begin{gathered} \text { Found, }[\mathbf{H S A}](\mathbf{g} / \mathbf{d L}) \\ (\text { Mean } \pm \text { SD, } \mathrm{n}=3) \end{gathered}$	\% RSD	$\pm \mathrm{SE}$
4.2	4.23 ± 0.0208	0.49	0.012	4.25 ± 0.0199	0.47	0.011
4.0	4.12 ± 0.0264	0.64	0.015	4.17 ± 0.0351	0.84	0.020
4.1	4.16 ± 0.0351	0.84	0.020	4.14 ± 0.0208	0.50	0.012
S-PEB	Intra-day precision			Inter-day precision		
$\begin{gathered} {[\mathrm{HSA}]} \\ (\mathrm{g} / \mathrm{dL}) \\ \text { BCG } \\ \text { method } \end{gathered}$	$\begin{gathered} \text { Found, }[\mathbf{H S A}](\mathbf{g} / \mathbf{d L}) \\ (\text { Mean } \pm \text { SD, } \mathrm{n}=3) \end{gathered}$	\% RSD	\pm SE	$\begin{gathered} \text { Found, }[\mathbf{H S A}](\mathbf{g} / \mathbf{d L}) \\ (\text { Mean } \pm \text { SD, } \mathrm{n}=3) \end{gathered}$	\% RSD	$\pm \mathrm{SE}$
4.2	4.21 ± 0.0451	1.07	0.026	4.21 ± 0.0251	0.60	0.014
4.0	4.18 ± 0.0251	0.60	0.014	4.16 ± 0.0451	1.08	0.026
4.1	4.17 ± 0.0416	1.00	0.024	4.17 ± 0.0351	0.84	0.020

Standard deviation (SD) = square root of $\sum(\mathrm{m}-\mathrm{i})^{2} / \mathrm{n}-1(\mathrm{~m}$ is the mean $)$
Percentage relative standard deviation $(\% \mathrm{RSD})=100 *(\mathrm{SD} / \mathrm{m})$
Standard error $(\mathrm{SE})=\mathrm{SD} / \sqrt{ } \mathrm{n}$
a)

c)

b)

Fig. S24 Job's plot of (a) R-PEB, (b) S-PEB and (c) BB with HSA at varying ratios of probe and HSA (0-1). Total concentration ([HSA]+[PROBE]) maintained at $10 \mu \mathrm{M}$ in PBS buffer ($1 \mathrm{mM}, \mathrm{pH}$ 7.4); $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$ (R-PEB, S-PEB), 385 nm (BB).
a)

c)

b)

Fig. S25 Variation in the fluorescence intensity of HSA complex of (a) R-PEB [1 $\mu \mathrm{M}]$, (b) S-PEB $[1 \mu \mathrm{M}]$ and (c) BB $[1 \mu \mathrm{M}]$ in the presence of urea ($0-7.5 \mathrm{M}$) in PBS buffer (1 mM , $\mathrm{pH} 7.4)$; $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Fig. S26 Fluorescence spectra of complexes of HSA (5 eq) and (a) R-PEB [1 $\mu \mathrm{M}]$ and (b) SPEB $[1 \mu \mathrm{M}]$ before (black) and after (red) addition excess stearic acid (25 eq) in PBS buffer ($1 \mathrm{mM}, \mathrm{pH} 7.4$) ; $\lambda_{\mathrm{ex}}=360 \mathrm{~nm}$.

Binding Site	Ligand Name	BE	Ligand Efficiency	H-bonding AAs	Grid Center	Grid Dimensions
Site II	Ibuprofen	-6.73	-0.45	ARG410, TYR411	$(7.771,3.136,-14.041)$	$(34,16,26)$
Site II	R-PEB	-6.47	-0.28	ARG410	$(7.771,3.136,-14.041)$	$(34,16,26)$
Site II	S-PEB	-6.60	-0.29	LEU430	$(7.771,3.136,-14.041)$	$(34,16,26)$
Site I	Warfarin	-8.46	-0.37	TYR150, ARG222	$(2.931,-9.920,7.847)$	$(30,30,36)$
Site I	R-PEB	-5.09	-0.22	NIL	$(2.931,-9.920,7.847)$	$(30,30,36)$
Site I	S-PEB	-5.64	-0.25	NIL	$(2.931,-9.920,7.847)$	$(30,30,36)$

Table S5 Molecular docking calculation results and associated parameters.

Fig. S27 Molecular docking for the binding of S-PEB with HSA (blind docking).

Fig. S28 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) spectra of R-PEB.

Fig. S29 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO_{6}) spectra of S-PEB.

Fig. S30 $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) spectra of BB.

Fig. S31 $125 \mathrm{MHz}^{13} \mathrm{C}$ NMR (DMSO_{6}) spectra of R-PEB.

Fig. S32 125 MHz ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) spectra of S-PEB.

Fig. S33 $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) spectra of BB.

Fig. S34 HRMS of R-PEB.

Fig. $\mathbf{S 3 5}$ HRMS of S-PEB.

Fig. S36 HRMS of BB.

