Electronic Supplementary Information

Fourier transform infrared spectroscopy imaging as a screening tool to predict the grade and invasiveness of urothelial carcinoma of the bladder

Monika Kujdowicz ^{1,2}, David Perez-Guaita³*, Piotr Chlosta⁴, Krzysztof Okon ¹ and Kamilla Malek ²*

- ¹ Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Grzegorzecka 16, 31-531, Poland
- ² Faculty of Chemistry, Jagiellonian University, Krakow, Gronostajowa 2, 30-387, Poland
- ³ Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner Street, Research Building, 46100 Burjassot, Valencia, Spain

⁴ Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Jakubowskiego 2, 30-688, Poland **Table S1.** Positions of FTIR bands with their assignment to vibrational modes and biomolecules.^{10,15,21,37}

Band [cm⁻¹] Assignment

967	DNA; v(CNC)						
995	RNA, glycogen; carbohydrate rings stretch and deformation						
1026	Glycogen; δ(COH)						
1052	Sugar moieties in DNA, polysaccharides, glycoproteins, collagen; v(C–O)						
1081	Collagen, nucleic acids, phosphate-containing molecules, glycogen; $v_s(PO_2)$,						
	v(CC)						
1119-1111	Polysaccharides, RNA, lactate; v(C-O), v(CC-OC)						
1154	Glycogen, v _{as} (CO-O-C)						
1200	Collagen, v(COH, COC)						
1222	Nucleic acids and other phosphate-containing molecules, $v_{as}(PO_2^-)$; collagens,						
1255	amide III						
1280	Collagens, amide III,						
1335	Collagens amide III:						
1370-1393	free fatty acids and amino acids; v _s (COO ⁻)						
1450	Proteins, lipids, carbohydrates; δ(CH ₂ , CH ₃)						
1516	Tyrosine residue, elastin; v(CC) _{ring}						
1544	Proteins; amide II; δ(NH) + v(C-N)						
1573	Lipids, proteins, nucleic acids; v(C=N, C=C)						
1591	free amino acids; v _{as} (COO ⁻)						
1637	Proteins (β -sheets); amide I; collagen and elastin: v(C=O) + δ (N-H)						
1652	Proteins (α-helix); amide I; v(C=O) + δ(N-H)						
1673	Amide Ι; ν(C=O) + δ(N-H)						
1687	Proteins (β-turns); amide I, DNA; v(C=O)+δ(N-H), v(C=C, C=O)						
1743	Triglycerides, phospholipids; v(C=O) ester group						

v – stretching mode, as – antisymmetric, s - symmetric; δ – in-plane deformation.

N (ve–) vs BC (ve+)		Tni (ve–) vs Tinv (ve+)		HG (ve–) vs LG (ve+) BC		N (ve–) vs BC (ve+)		Tni (ve–) vs Tinv (ve+)	
Epithelium						Subepithelium			
ve–	ve+	ve–	ve+	ve–	ve+	ve–	ve+	ve-	ve+
1697	1683	1590	1660	1660	1682	1697	1683	1682	1652
1670	1608	1552	1565	1633	1609	1672	1657	1640	1623
1586	1547	1524	1477	1576	1547	1585	1635	1544	1562
1397	1485	1460	1431	1487	1457	1547	1558	1464	1447
1310	1447	1337	1165	1435	1215	1398	1414	1364	1397
1140	1413	1226	1158	1164	1043	1311	1247	1214	1136
1043	1060	1188	1108	980	992	1049	996	1082	1068
	996	1043				1010		1023	980

Table S2. The position of regression vectors for the constructed models for BC classification (in cm⁻¹). Bold numbers indicate the specific IR features of the epithelium and subepithelium.

Figure S1. The comparison of IR distribution images for carbohydrates (**A1**, **A2**) and IHC Glut-1 expression (**B1**, **B2**, magnification 2×) for two excision samples from the T0 patient. Pink arrows in **A2** and **B2** indicate the early neoplastic changes which were not recognised in IHC.

Figure S2. Area Under the Receiver Operation Curves for the cross validation of the patient groups.

Legend: Epithelium (n=417): n(N) = 62, n(Tni) = 124, n(Tinv) = 177, n(LG) = 167, n(HG) = 134; Subepithelium (n=494): n(N) = 81, n(Tni) = 140, n(Tinv) = 206.

Figure S3. Averaged second derivatives IR spectra (±SD, marked with dotted lines) subjected to the epithelial and subepithelial bladder tissue (extracted from classes of UHCA).

Legend: Epithelium (n=417): n(N) = 62, n(PM) = 44, n(Tni) = 124, n(T1) = 94, $n(\ge T2) = 83$, n(LG) = 167, n(HG) = 134; Subepithelium (n=494): n(N) = 81, n(PM) = 61, n(Tni) = 140, n(T1) = 122, $n(\ge T2) = 84$; and Tinv is $T1 + \ge T2$.

Figure S4. Averaged absorbance FTIR spectra of the epithelial and subepithelial tissues of the bladder (extracted from classes of UHCA).

Legend: Epithelium (n=417): n(N) = 62, n(Tni) = 124, n(Tinv) = 177, n(LG) = 167, n(HG) = 134; Subepithelium (n=494): n(N) = 81, n(Tni) = 140, n(Tinv) = 206.