SUPPORTING INFORMATION

Glucose oxidase-encapsulated liposomes for amplified autofluorescence-free immunoassay of prostate-specific antigen with photoluminescence of CePO₄:Tb nanocrystals

Xiwen Jiang,^{a,†} Cuiyuan Pan,^{a,†} Qiaowen Wang,^{a,†} Zipeng Yin,^{b,†} Xiao Han^{a,*} and Dianping Tang^{a,b,*}

^a College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China

^b Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China

^{*} Corresponding authors.

E-mail addresses: hanxiao@fzu.edu.cn (X. Han); dianping.tang@fzu.edu.cn (D. Tang).

[†] Jiang, Pan, Wang and Yin have contributed equally to this work.

TABLE OF CONTENTS

Reagents and chemicals	S3
Apparatus	S3
Figure S1. Particle size distribution of liposomes	S4
Figure S2. PL intensity of CPOT at different pH.	S4
Table S1. Comparison of the methods for PSA detection developed by other researchers	S5
References	S6

Reagents and chemicals

PSA ELISA kit containing PSA standards, glucose oxidase (GOD), bovine serum albumin (BSA), monoclonal anti-human PSA capture antibody (mAb₁), monoclonal anti-human PSA detection antibody (mAb₂) and all buffer solutions were purchased from Sangon-Biotech (Shanghai, China); High-binding polystyrene 96-well microplates were obtained from Greiner Bio-One (Frickenhausen, Germany); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3phosphoethanolamine (DPPE), glutaraldehyde (AR, 50 wt %) , Triton X-100, citric acid monohydrate, glucose, Ce(NO₃)₃·6H₂O (99.95%), Tb(NO₃)₃·6H₂O (99.9%) were purchased from Aladdin (Shanghai); Chloroform, cholesterol and concentrated phosphoric acid were procured from Sinopharm Chem. Re. Co., Ltd. All other reagents used were A.R. grade. Ultrapure water with a resistivity of 18 MΩ*cm (purified by a Millipore water purification system) was used in all steps.

Apparatus

X-ray diffraction (XRD) patterns were collected using an X-ray diffractometer (RigakuUltima III) with high-intensity Cu K α 1 irradiation (λ = 1.5406 nm). X-ray photoelectron spectra (XPS) were recorded on a Kratos standard and monochromatic source (Al KR) operated at 15 kV and 10 mA. Transmission electron microscopy (TEM) was performed on a JEOL JEM-2100 microscope at an acceleration voltage of 200 kV, and Zetaszier Nano-ZS90 (Malvern) was also used. Photoluminescence spectra and luminescence decay curves were recorded on an F-4600 fluorescence spectrophotometer (Hitachi, Japan).

Preparation of mAb1-coated microplate

Briefly, 50 μ L of mAb1 (10 μ g/mL) was injected into the wells of a high binding polystyrene microplate as a PSA capture unit and incubated overnight at 4 °C. PBS buffer (0.1 M, pH 7.4) containing 0.05% Tween 20 was used as a washing solution to wash away unbound mAb₁ antibody. Subsequently, non-specific binding sites were blocked by incubation with blocking buffer (10 mM PBS containing 1.0 wt% BSA, pH 7.4) for 1 h at 4 °C and the remaining BSA was removed by washing with washing solution.

Figure S1. Particle size distribution of liposomes.

Figure S2. PL intensity of CPOT at different pH values.

	Table S1. (Comparison	of the methods	for PSA	detection	developed by	other researchers.
--	-------------	------------	----------------	---------	-----------	--------------	--------------------

Method	Materials	Linear range	LOD (pg mL ⁻¹)	Refs
		(ng/mL)		
Persistent luminescence assay	Zn_2GeO_4 : Mn^{2+} , Pr^{3+} nanorods	0.005-25	3.25	This work
Persistent luminescence aptasensor	ZnGeO:Mo NRs and	0-10	9.2	[1]
	Au@Ag@SiO2 NPs			
Immunochromatography test strip	semiconducting polymer dots	2-10	320	[2]
Fluorescence aptasensor	carbon dots (CDs) and graphene	1-100	220	[3]
	oxide (GO)			
SERS immunosensor	$Cu_{2\text{-}x}S_ySe_{1\text{-}y}$ NPs and Ag NPs	3-120	2490	[4]
Photoelectrochemical immunosensor	CuS QDs and CdS@g-	0.01-50	4	[5]
	C ₃ N ₄ heterojunction			
Electrochemical aptasensors	poly A aptamer and AuNPs	0.1-100	20	[6]

References

- 1. Y. Zhao, F. Zheng, L. Shi, H. Liu and W. Ke, ACS Appl Mater Interfaces, 2019, 11, 40669-40676.
- 2. Y. Yang, Y. Yang, M. Liu and Y. Chan, Anal. Chem., 2020, 92, 1493-1501.
- 3. J. He, Y. Cheng, Q. Zhang, H. Liu and C. Huang, *Talanta*, 2020, **219**, 121276.
- 4. L. Yang, M. Gao, H. Zou, Y. Li and C. Huang, Anal. Chem., 2018, 90, 11728-11733.
- 5. Y. Dong, J. Cao, B. Wang, S. Ma and Y. Liu, ACS Appl Mater Interfaces, 2018, 10, 3723-3731.
- 6. O. Shayesteh and R. Ghavami, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2020, 226, 117644.