## Supporting information

## A programmable catalytic molecular nanomachine for highly sensitive proteins and small molecules detection

Na Li\*, Minhui Li, Mei Li

Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China

\*E-mail:

nali@hnu.edu.cn

| Name             | Sequence (5'-3')                                                                                     |
|------------------|------------------------------------------------------------------------------------------------------|
| Ia               | CGACATCTAACCTAGC TCACGGA                                                                             |
| Ha               | TCCGTGA <u>GCTAGGTTAGATGTCG</u> CCATGTGTAGA<br><u>CGACATCTAACCTAGC</u>                               |
| $H_{b}$          | AGATGTC <u>GTCTACACATGG</u> CGACATCTAACCTAGC<br><u>CCATGTGTAGAC</u>                                  |
| Ι                | TGTCATCTAACTAGT TCACGGA                                                                              |
| $H_{1a}$         | TCCGTGA <u>ACTAGTTAGATGACA</u> CCAATCTGTAC <u>T</u><br><u>GTCATCTAACTAGT</u>                         |
| H <sub>2a</sub>  | AGATGAC <u>AGTACAGATGG</u> TGTCATCTAACTAGT <u>C</u><br><u>CATCTGTACT</u>                             |
| $H_{2b}$         | AGTTAGAT <u>GACAGTACAGATGG</u> TGTCATCTAACTA<br>GT <u>CCATCTGTACTGTC</u>                             |
| $H_{2c}$         | TAGTTAGA <u>TGACAGTACAGATGG</u> TGTCATCTAACT<br>AGT <u>CCATCTGTACTGTCA</u>                           |
| $H_{2d}$         | CTAGTTAG <u>ATGACAGTACAGATGG</u> TGTCATCTAAC<br>TAGT <u>CCATCTGTACTGTCAT</u>                         |
| $I_{b1}$         | Biotin-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                          |
| I <sub>b2</sub>  | TGTCATCTAACTAGT CCTGTC TTTTTTTTTTTTTTTTT                                                             |
| $I_{D1}$         | Dig-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                             |
| I <sub>D2</sub>  | TGTCATCTAACTAGT CCTGT CTTTTTTTTTTTTTTTTT                                                             |
| $H_1$            | AGCCTCGTCGATCTCCACC TTTTT TCCGTGA ACT(F<br>AM)AGTTAGATGACA CCAATCTGTAC TGTCATCTA                     |
| $\mathrm{H}_{2}$ | AGCCTCGTCGATCTCCACC TTTTT CTAGTTAG <u>ATG</u><br><u>ACAGTACAGATGG</u> TGTCATCTAACTAGT <u>CCATCTG</u> |
| $Y_1$            | TACTGTCAT<br>GGTGGAGATCGACGAGGCT GGAAGTGACTCATGTT<br>AGCAGGTCTGTAAGTA                                |
| Y <sub>2</sub>   | GGTGGAGATCGACGAGGCT TACTTACAGACCTGCT<br>A CATCCTGACAACTTAGT                                          |
| Y <sub>3</sub>   | GGTGGAGATCGACGAGGC TACTAAGTTGTCAGGAT<br>G AACATGAGTCACTTCC                                           |

Table S1. Sequences of synthesized DNA probes



Fig. S1. Agarose gel electrophoresis image to test the efficiency of initiator triggered CHA between different hairpin probes in 1x HEPES buffer (20 mM HEPES, 12.5 mM MgCl<sub>2</sub>, pH 8.0) at 37 °C for 4 h. (A)  $H_a$  and  $H_b$ . (B)  $H_{1a}$  and  $H_{2a}$ . (C)  $H_{1a}$  and  $H_{2b}$ . (B)  $H_{1a}$  and  $H_{2c}$ .



Fig. S2. The secondary structures and free energy ( $\Delta G$ ) values of hairpin probes were estimated (37°C) by NUPACK analysis.



Fig. S3. (A) Principle illustration of the traditional CHA using hairpin  $H_{1a}$  and  $H_{2d}$ . (B) Agarose gel electrophoresis image to test the efficiency of initiator triggered CHA reaction between hairpin  $H_{1a}$  and  $H_{2d}$  in 1x HEPES buffer at 37 °C for 4 h.



Fig. S4. (A) Principle illustration of the traditional CHA using hairpin  $H_1$  and  $H_2$ . (B) Agarose gel electrophoresis image to demonstrate the efficiency of initiator triggered CHA reaction between hairpin  $H_1$  and  $H_2$  in 1x HEPES buffer at 37 °C for 4 h.



Fig. S5. Agarose gel electrophoresis image the assembly process of Y-shaped DNA using  $Y_1$ ,  $Y_2$ , and  $Y_3$  in 1x HEPES buffer at 37 °C for 1 h, the reaction conditions were shown in panel.

duplex  $I_1: I_2 = T_m = 18.6 \ ^{\circ}C$ 

## 



Fig. S6. The  $T_m$  values were estimated by UNAFold under a condition of 10 mM NaCl and 12.5 mM MgCl<sub>2</sub>. The hairpin  $I_1:I_2$  with 6-base stem domain and 80-base poly-thymine loop domain was used to simulate the affinity complex.



Fig. S7. Signal-to-background ratios of SA-responsive CCHA reaction under 3 nM SA, 30 nM split initiators ( $I_{b1}$  and  $I_{b2}$ ), and different concentrations of hairpin trimers ( $H_1^Y$  and  $H_2^Y$ ) in 1x HEPES buffer at 37 °C for 4 h.



Fig. S8. Signal-to-background ratios of SA-responsive CCHA reaction in the presence of 3 nM SA, 80 nM hairpin trimers  $(H_1^Y \text{ and } H_2^Y)$ , and increasing concentrations of split initiators (I<sub>b1</sub> and I<sub>b2</sub>) in 1x HEPES buffer at 37 °C for 4 h.



Fig. S9. Linear fitting curve of the fluorescence signal change versus the concentrations of SA.



Fig. S10. Linear fitting curve of the fluorescence signal change versus the concentrations of biotin.



Fig. S11. Real-time fluorescence signal of programmable CCHA reaction under different experiment conditions, the emission wavelength was fixed at 520 nm with 480 nm excitation wavelength.



Fig. S12. Signal-to-background ratios of Anti-Dig antibody initiated CCHA reaction under varying concentrations of split initiators ( $I_{D1}$  and  $I_{D2}$ ) plus 100 nM Anti-Dig antibody, 80 nM hairpin trimers ( $H_1^Y$  and  $H_2^Y$ ) in 1x HEPES buffer at 37 °C for 4 h.



Fig. S13. Signal-to-background ratios of Anti-Dig antibody triggered CCHA reaction with varying concentrations of hairpin trimers  $(H_1^Y \text{ and } H_2^Y)$  plus 100 nM Anti-Dig antibody, 80 nM split initiators (I<sub>D1</sub> and I<sub>D2</sub>) in 1x HEPES buffer at 37 °C for 4 h.



Fig. S14. Linear fitting curve of the fluorescence signal change versus the concentrations of Anti-Dig antibody.



Fig. S15. Linear fitting curve of the fluorescence signal change versus the concentrations of digoxigenin.

| Samples | Spiked Protein | Found Protein | Recovery | RSD      |
|---------|----------------|---------------|----------|----------|
|         | (nM)           | (nM)          | (%)      | (n=3, %) |
| 1       | 1              | 1.10          | 110.0    | 4.2      |
| 2       | 2.5            | 2.46          | 98.4     | 4.8      |
| 3       | 4.5            | 4.59          | 102.0    | 3.7      |
| 4       | 25             | 24.59         | 98.4     | 3.8      |
| 5       | 60             | 63.57         | 106.0    | 4.2      |
| 6       | 120            | 122.04        | 101.7    | 3.9      |

**Table S2.** Recovery experiment of proteins, SA (number 1 to 3) and Anti-Digantibody (number 4 to 6), in 10 % human serum sample.

| Samples | Spiked Small | Found Small | Recovery | RSD      |
|---------|--------------|-------------|----------|----------|
|         | Molecule     | Molecule    | (%)      | (n=3, %) |
| 1       | 1 nM         | 1.07 nM     | 107.0    | 3.6      |
| 2       | 2 nM         | 2.20 nM     | 110.0    | 4.1      |
| 3       | 5 nM         | 4.68 nM     | 93.6     | 2.9      |
| 4       | 0.2 µM       | 0.22 μM     | 110.0    | 4.9      |
| 5       | 0.5 μΜ       | 0.47 µM     | 94.0     | 4.0      |
| 6       | 0.8 µM       | 0.84 µM     | 105.0    | 3.5      |

**Table S3.** Recovery experiment of small molecules, biotin (number 1 to 3) and Dig(number 4 to 6), in 10 % human serum sample.

| Technique                 | Target               | Detection | Sensing strategy                                                                 | Reference |
|---------------------------|----------------------|-----------|----------------------------------------------------------------------------------|-----------|
| Fluorescence              | Streptavidin         | 0.47 nM   | Magnetic separation and copper nanoclusters                                      | 1         |
| Fluorescence              | Streptavidin         | 1.07 nM   | Sterically and allosterically tunable hybridization chain                        | 2         |
| Fluorescence              | Streptavidin         | 2.93 nM   | Protein-induced fluorescence<br>enhance                                          | 3         |
| Fluorescence              | Streptavidin         | 0.27 nM   | Sterically tunable nucleic acid<br>hyperbranched rolling circle<br>amplification | 4         |
| Electrochemistry          | Streptavidin         | 3.67      | Nucleic Acid Nanostructure                                                       | 5         |
| Electrochemistry          | Anti-Dig<br>antibody | 1.23      | Nucleic Acid Nanostructure                                                       | 5         |
| Electrochemistry          | Anti-Dig<br>antibody | 9 nM      | Multiplexed DNA Circuits                                                         | 6         |
| Fluorescence              | Anti-Dig<br>antibody | 5.6 nM    | Steric hindrance inhibition of the DNA strand displacement                       | 7         |
| Electrochemilum inescence | Anti-Dig<br>antibody | 0.72 nM   | S-doped yttrium oxide ultrathin nanosheets                                       | 8         |
| Fluorescence              | streptavidin         | 48.8 pM   | Programmable catalytic molecular nanomachine                                     | This work |
| Fluorescence              | Anti-Dig<br>antibody | 0.85 nM   | Programmable catalytic<br>molecular nanomachine                                  | This work |

 Table S4. Comparison of the detection performance toward proteins with different methods.

| Technique        | Target | Detection limit | Sensing strategy                                     | Reference |
|------------------|--------|-----------------|------------------------------------------------------|-----------|
| Fluorescence     | Biotin | 3.1 nM          | Magnetic separation and<br>copper nanoclusters       | 1         |
| Electrochemistry | Biotin | 3.57 µM         | Nucleic Acid Nanostructure                           | 5         |
| Fluorescence     | Biotin | 13 nM           | Antibody-Bridged Beacon                              | 9         |
| Electrochemistry | Dig    | 177 nM          | Nucleic Acid Nanostructure                           | 5         |
| Fluorescence     | Dig    | 28 nM           | Antibody-Bridged Beacon                              | 9         |
| Fluorescence     | Dig    | 60.5 nM         | Small-MoleculeLinked<br>Hybridization Chain Reaction | 10        |
| Electrochemistry | Dig    | 10 nM           | DNA-Based Immunoassay                                | 11        |
| Fluorescence     | Biotin | 0.89 nM         | Programmable catalytic molecular nanomachine         | This work |
| Fluorescence     | Dig    | 9.5 nM          | Programmable catalytic molecular nanomachine         | This work |

 Table S5. Comparison of the detection performance toward small molecules with different methods.

## References

- J. Cao, W. Wang, B. Bo, X. Mao, K. Wang and X. Zhu, *Biosens. Bioelectron.*, 2017, 90, 534-541.
- F. Ban, H. Shi, C. Feng, X. Mao, Y. Yin and X. Zhu, *Biosens. Bioelectron.*, 2016, 86, 219-224.
- 3 H. Kim, C. Y. Lee, J. Song, J. Yoon, K. S. Park and H. G. Park, *RSC Adv.*, 2018, 8, 39913-39917.
- 4 H. Shi, X. Mao, X. Chen, Z. Wang, K. Wang and X. Zhu, *Biosens. Bioelectron.*, 2017, **91**, 136-142.
- 5 Somasundaram and C. J. Easley, J. Am. Chem. Soc., 2019, 141, 11721-11726.
- 6 3S. Bracaglia, S. Ranallo, K. W. Plaxco, and F. Ricci, *ACS Sens.*, 2021, 6, 2442-2448.
- 7 Y. Peng, X. Li, R. Yuan and Y. Xiang, Chem. Commun., 2016, 52, 12586-12589.
- 8 H. Gao, S. Liu, Z. Wang, L. Si and Z. Dai, *Analyst.*, 2018, 143, 2997-3000.
- 9 X. Yan, X. C. Le and H. Zhang, Anal. Chem., 2018, 90, 9667-9672.
- M. Hansen-Bruhn, L. D. F. Nielsen and K. V. Gothelf, ACS Sens., 2018, 3, 1706-1711.
- S. S. Mahshid, F. Ricci, S. O. Kelley and A. Vallée-Bélisle, ACS Sens., 2017, 2, 718-723.