A microfluidic immunosensor for automatic detection of carcinoembryonic antigen based on immunomagnetic separation and droplet array

Haoran $Hu^{1, 2, 3, \#}$, Gaozhe Cai^{2, #}, Zehang Gao^{2, 4}, Cheng Liang⁵, Fengna Yang^{1, 3}, Xiaohui Dou^{1, 3}, Chunping Jia², Jianlong Zhao², Shilun Feng^{2, *}, Bei Li^{1, 3, *}

- ¹ School of Ophthalmology &Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- ² State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- ³ State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, PR China
- ⁴ Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, China
- ⁵ State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- # The authors contributed equally to this work
- * Corresponding author

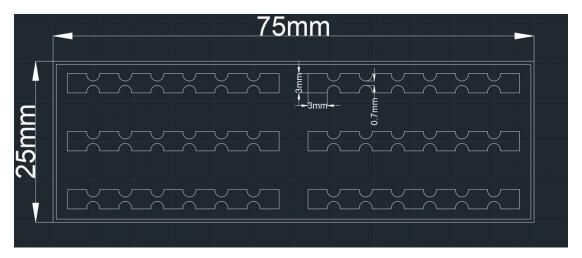


Figure S1: CAD design drawing of chip structure. The chip is 75 mm long and 25 mm wide. Each channel is composed of seven 3 mm square chambers and 0.7 mm link channels and the whole chip has 6 channels.

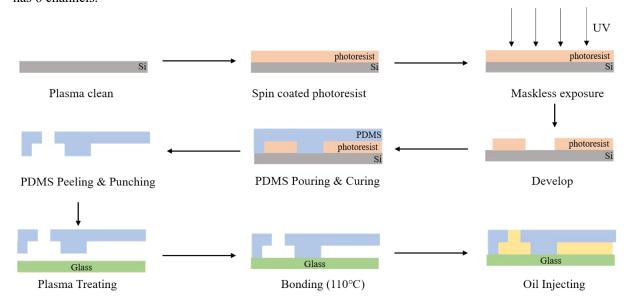


Figure S2: Chip manufacturing process.