Solvent-regulated fluorescence off-on signaling of Ni(II) and Zn(II) with the formation of two mononuclear complexes with ATP detection ability by Zn(II) assembly

Subham Ray^a, Uttam Kumar Das^{ba^{*}}, Soumik Laha^c, Manik Das^a, Arijit Bag^d, Indranil Choudhuri^e, Nandan Bhattacharya^e, Bidhan Chandra Samanta^f, Tithi Maity^a

^a Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, West Bengal,

721404, India

^b Department of Chemistry, School of Physical Science, Mahatma Gandhi Central University, Bihar, India

^c Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India.

^dSchool of Natural and Applied Sciences, Maulana Abul Kalam Azad University of Technology,

West Bengal, India

^e Department of Biotechnology, Panskura Banamali College, Panskura West Bengal, India.

^fDepartment of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur, India

Email: titlipkc2008@gmail.com, uttamkumardas@mgcub.ac.in

Figure/Table Content

No		number
Fig. S1	FTIR spectrum of HL	S3
Fig. S2	FTIR spectrum of complex 1	S4
Fig. S3	FTIR spectrum of complex 2	S5
Fig. S4	UV spectrum of HL, complex 1 and complex 2	S5
Fig. S5	Mass spectrum of HL	S6
Fig. S6	Mass spectrum of complex 1	S6
Fig. S7	Mass spectrum of complex 2	S7
Fig. S8	Molecular plot of complex 1	S7
Fig. S9	Molecular plot of complex 2	S8
Fig. S10	Absorbance alteration of HL $(3 \times 10^{-5} \text{ M}^{-1})$ as a function of time in a) methanol: H ₂ O (9:1) HEPES buffer b) pure HEPES medium	S8
Fig. S11	In different pH the fluorescence intensity changes of free HL (3 $\times 10^{-5}$ M ⁻¹) a) at 453 nm in the absence and presence (four equivalent) of Zn(II)/Ni(II) in methanol-water HEPES buffer medium b) at 512 nm in the absence and presence (four equivalent) of Zn(II) in HEPES buffer medium	S9
Fig. S12	Change of fluorescence emission intensity of HL as a function of a) Zn(II) and Ni(II) concentration for detection limit calculation in a) methanol /water 9:1 HEPES buffer medium b) Zn(II) only in pure HEPES buffer medium, used to measure limit of detection.	S9
Fig. S13	a) During recognition of Zn(II) and Ni(II) in methanol-water medium b) Zn(II) in HEPES buffer medium by HL , the Binding constant measurement by utilizing probe-analyte fluoresce enhancement titration pictograph.	S10
Fig. S14	Fluorescence intensity change of a) HL- Zn(II) b) HL- Ni(II) adduct in methanol water (9:1) HEPES buffer medium in the presence of four equivalent of various competitive cations.	S10
Fig. S15	Selective sensing of Zn(II) in presence of Ni(II) or vice versa in the semi-aqueous medium	S11
Fig. S16	Jobs plot of 1:1 probe-analyte adduct formation during sensing of a) ATP by complex 2 in purely HEPES buffer medium.	S12
Fig. S17	The theoretically obtained (TDDFT) UV spectrum of complex 2 and complex 2 -ATP adduct	S12
Fig. S18	Dose dependent suppression of cell viability of HL and complex 2 on HeLa cell line (24 hrs)	S13
Table S1	C-H••• Br interaction parameter of complex 1	S13
Table S2	Hydrogen bonding parameter of complex 2	S13
Table S3	C-H••• Br interaction parameter of complex 2	S14
Table S4	Reference table of the simple Schiff base ligand with their activity towards Zn(II) and Ni(II) sensing	S14

Fig. S1: FTIR spectrum of HL

Fig. S2: FTIR spectrum of complex 1

Fig. S3: FTIR spectrum of complex 2

Fig.S4: UV spectrum of HL, complex 1 and complex 2

Fig. S5: Mass spectrum of HL

Fig. S6: FTIR spectrum of complex 1

Fig. S7: Mass spectrum of complex 2

Fig. S8: Molecular plot of complex 1

Fig. S9: Molecular plot of complex 2

Fig. S10: Absorbance alteration of **HL** $(3 \times 10^{-5} \text{ M}^{-1})$ as a function of time in a) methanol: H₂O (9:1) HEPES buffer b) pure HEPES medium

Fig. S11: In different pH the fluorescence intensity changes of free HL $(3 \times 10^{-5} \text{ M}^{-1})$ a) at 453 nm in the absence and presence (four equivalent) of Zn(II)/Ni(II) in methanol-water HEPES buffer medium.

Fig. S12: Change of fluorescence emission intensity of **HL** as a function of a) Zn(II) and Ni(II) concentration for detection limit calculation in a) methanol /water 9:1 HEPES buffer medium b) Zn(II) only in pure HEPES buffer medium, used to measure limit of detection.

Fig. S13: a) During recognition of Zn(II) and Ni(II) in methanol-water medium b) Zn(II) in HEPES buffer medium by **HL**, the Binding constant measurement by utilizing probe-analyte fluoresce enhancement titration pictograph.

Fig. S14: Fluorescence intensity change of a) **HL-**Zn(II) b) **HL-**Ni(II) adduct in methanol water (9:1) HEPES buffer medium in the presence of four equivalent of various competitive cations.

Fig. S15: Selective sensing of Zn(II) in presence of Ni(II) or vice versa in the semi-aqueous medium.

Fig. S16: Jobs plot of 1:1 probe-analyte adduct formation during sensing of ATP by complex **2** in purely HEPES buffer medium.

Fig. S17: The theoretically obtained (TDDFT) UV spectrum of complex 2 and complex 2-ATP adduct

Table S1: C-H••• Br interaction parameter of complex 1

C–H∙••Br	C-H	H∙∙∙Br	C∙∙∙Br	C–H∙∙∙Br	Symmetry
	(Å)	(Å)	(Å)	(°)	operation for A
C(40)–H(40A)•••Br2	0.98	2.98	3.668(6)	128.3	x, -y+3/2, z+1/2
C(28)–H(28)••• Br2	0.95	3.02	3.828(4)	143.9	-x+1, -y+2, -z+1

 Table S2: Hydrogen bonding parameter of complex 2

D–H•••A	D–H	H●●●A	D•••A	D-H•••A	Symmetry
	(Å)	(Å)	(Å)	(°)	operation for A
N(17)-H(17)•••O66	0.87(5)	2.14(5)	2.959(7)	156(4)	-x, y-1/2, -z+1/2
N(33)–H(33)•••O70	0.85(5)	2.15(6)	2.978(6)	165(5)	х, y, z
N(49)–H(49)●●O70	0.79(7)	2.32(7)	3.025(7)	149(7)	х, y, z

C–H∙∙∙Br	C–H	H∙∙∙Br	C∙∙∙Br	C–H∙∙∙Br	Symmetry
	(Å)	(Å)	(Å)	(°)	operation for A
C(13)–H(13)•••Br8	0.93	2.97	3.839(5)	155.4	-x, y+1/2, -z+1/2
C(27)–H(27)●●● Br4	0.93	2.93	3.761(5)	149.5	x, -y+3/2, z+1/2
C(29)–H(29)••• Br6	0.93	2.92	3.636(5)	134.9	-x+1, y+1/2, -z+1/2
C(59)–H(59)∙•• Br6	0.93	3.00	3.881(5)	159.0	-x+1, -y+1, -z
C(34)–H(34)••• Br3	0.97	2.97	3.830(6)	148.0	x, -y+3/2, z-1/2

Table S3: C-H••• Br interaction parameter of complex 2

Table S4: Reference table of the simple Schiff base ligand with their activity towards Zn(II) and Ni(II) sensing

Probe	Cation detectio n	LOD (M)	Crystal obtained	Solvent / solvent sensitivity for multi cation	Probe revers ibility	Applicati ons	Solid Metal- ligand complex for 2 nd step sensing	refere nces
	Zn ²⁺	2.6×10-7	No	EtOH-H ₂ O (1:2)	No	No	No	1
Br OH O	Zn ²⁺ ,	4.1×10 ⁻⁷	Yes	MeOH-H ₂ O (1:9)	No	live cells imaging	No	2
	Zn ²⁺ , Mg ²⁺	3.0×10 ⁻⁷ 2.9×10 ⁻⁸	No, No	DMF-H ₂ O (9:1) MeCN/Yes	No	live cells imaging, Tap water, Real sample	No	3
N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C	Zn ²⁺ , Mg ²⁺ , Co ²⁺	1.8×10 ⁻⁶ 7.0×10 ⁻⁹ 2.9×10 ⁻⁸	No, No, No	MeCN-H ₂ O (9:1)/No	No	live cells imaging	No	4
CI OH	Ni ²⁺	1.0×10 ⁻⁷	No	DMSO-H ₂ O (1:1)	No	No	No	5
С ОН	Zn ²⁺	1.0×10-7	Yes	H ₂ O (HEPES buffer)	Yes	Fluorescen ce image in plant root	No	6
	Zn ²⁺ , Ni ²⁺	1.6×10 ⁻⁷ 6.9×10 ⁻⁷	No	DMSO-H ₂ O (9:1)/No	Yes	No	No	7

	Ni ²⁺	1.0×10 ⁻⁴	Yes	MeCN	No	No	No	8
	Zn ²⁺ , Ni ²⁺	7.2×10 ⁻⁸	No	DMSO-H ₂ O (9:1, v/v),	No	live cells imaging	No	9
ОН ОН ОН	Al ³⁺ , Zn ²⁺	9.0×10 ⁻⁷ 6.6×10 ⁻⁹	No	MeOH-H ₂ O (9:1) DMF/H ₂ O (9:1)/Yes	No	No	No	10
	Zn ²⁺	9.6×10 ⁻⁸	No	DMSO/H ₂ O (9:1)	Yes	On-site detection , live cells imaging	No	11
	$Zn^{2+,}$ Cu ²⁺	3.2×10 ⁻⁸ 2.1×10 ⁻⁸	No	MeOH-H ₂ O (9:1) /No	Yes	live cells imaging	No	12
	Zn ²⁺	5.3×10 ⁻⁸	Yes	MeOH-H ₂ O (9:1)	Yes	live cells imaging	No	13
N-C-Br OH	Zn ²⁺	3.7×10-7	Yes	MeOH-H ₂ O (9:1)	Yes	DNA, HSA Interaction , Heavy metal detection	No	14
HONOLON	Ni ²⁺	2.3×10 ⁻⁵	No	EtOH	No	Paper strip	No	15
	Ni ²⁺	1.8×10-6	Yes	MeOH/H ₂ O (1:1)	No	live cells imaging	No	16
Our Probe (HL)	Zn ²⁺ , Ni ²⁺		Yes (crystal obtained in both cases)	H ₂ O (1:1) MeO-H ₂ O (9:1)/Yes	Yes	live cells imaging, ,	Yes/ATP detection	
