Supporting Information for

Evaluation of kasugamycin as a chiral selector in capillary

 electrophoresisTable S1 Physical and chemical properties of KAS.

Item	Description
Synonyms	Kasumin; Kasurabcide
Classification	Aminoglycoside antibiotic; Agricultural antibiotic
Appearance	White to light yellow powder
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{9}$
Relative molecular mass	379.363
Melting point	$236{ }^{\circ} \mathrm{C}$
LogP	-2.06
Solubility	Insoluble in several organic solvents (methanol, ethanol,
	benzene, etc); Easily soluble in water (about $1 \mathrm{~g} / 8 \mathrm{~mL}$ at
	room temperature)
pKa	3.23
Number of chiral centers	10

Table S2 Comparable properties of some typical antibiotics chiral selectors.

Kind	Representative	Consumption	Water	Ultraviolet	Price	Stereoselectivity
			solubility	absorption		
Glycopeptides	Vancomycin	Small	Moderate	Strong	Expensive	Strong
Ansamycins	Rifampicin	Moderate	Poor	Strong	Moderate	Moderate
Macrolides	Clarithromycin	Large	Poor	Weak	Moderate	Moderate
β-lactams	Penicillin G	Small	Moderate	Strong	Cheap	Moderate
Tetracyclines	Doxycycline	Moderate	Moderate	Strong	Expensive	Moderate
Lincosamides	Clindamycin pho	Moderate	Good	Weak	Expensive	Strong
Aminoglycosi	Kanamycin	Moderate	Moderate	Weak	Cheap	Weak
des	KAS (this work)	Moderate	Good	Weak	Moderate	Moderate

Table S3 Effect of KAS concentration on chiral separations.

Rs	KAS concentration (mM)				
Analytes	40	50	60	70	80
EPH(PSE)	5.40	6.57	8.64	8.32	7.75
QIN(QID)	0.55	1.21	1.52	1.50	1.44
CIN(CID)	0.55	1.18	1.51	1.47	1.43

Conditions: capillary temperature, $25{ }^{\circ} \mathrm{C}$; separation voltage, 8 kV ; BGE, 40 mM borax buffer containing 20\% methanol (v / v) for $\mathrm{QIN}(\mathrm{QID})$, $\mathrm{CIN}(\mathrm{CID})$ or none of organic modifiers for EPH(PSE) and $40-80 \mathrm{mM}$ KAS; buffer $\mathrm{pH}, 8.0$ for QIN(QID) and CIN(CID) or 8.2 for $\mathrm{EPH}(\mathrm{PSE})$.

Table S4 Effect of separation voltage on chiral separations.

Rs	Separation voltage (kV)			
Analytes	6	8	10	12
EPH(PSE)	8.06	8.64	7.11	5.62
QIN(QID)	1.45	1.52	1.16	0.80
CIN(CID)	1.43	1.51	1.10	0.79

Conditions: capillary temperature, $25{ }^{\circ} \mathrm{C}$; separation voltage, $6-12 \mathrm{kV}$; BGE, 40 mM borax buffer containing 20\% methanol (v / v) for $\mathrm{QIN}(\mathrm{QID})$, $\mathrm{CIN}(\mathrm{CID})$ or none of organic modifiers for EPH(PSE) and 60 mM KAS ; buffer $\mathrm{pH}, 8.0$ for QIN(QID) and $\mathrm{CIN}(\mathrm{CID})$ or 8.2 for $\mathrm{EPH}(\mathrm{PSE})$.

Table S5 Chiral separation results with KAS as a chiral selector.

| | Migration time | | | $\begin{array}{c}\text { Number of } \\ \text { theoretical plates }\end{array}$ | | | Resolution | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Selectivity

factor\end{array}\right]\)

Conditions: capillary temperature, $25{ }^{\circ} \mathrm{C}$; separation voltage, +8 kV ; BGE, 40 mM borax buffer containing 20% methanol ($\mathrm{v} / \mathrm{v}, 0 \%$ for PRO, AML, EPH and PSE) and 60 mM KAS; buffer $\mathrm{pH}, 8.0$ (8.2 for EPH and PSE).

Fig.S1 (A) Chiral separations with different organic solvents as additives. Conditions: capillary temperature, $25^{\circ} \mathrm{C}$; voltage, 8 kV ; BGE, 40 mM borax buffer containing 20% organic modifiers (v / v) and 60 mM KAS; buffer $\mathrm{pH}, 8.0$ for QIN(QID) and CIN(CID) or 8.2 for EPH(PSE). (B) Effect of methanol concentration on enantioseparation. Conditions: capillary temperature, $25^{\circ} \mathrm{C}$; voltage, 8 kV ; BGE, 40 mM borax buffer containing $0-40 \%$ methanol (v / v) and 60 mM KAS; buffer pH , 8.0 for $\mathrm{QIN}(\mathrm{QID})$ and $\mathrm{CIN}(\mathrm{CID})$ or 8.2 for $\mathrm{EPH}(\mathrm{PSE})$.

Fig.S2 2D ROESY NMR spectra of (A) EPH and KAS (1:1); (B) PSE and KAS (1:1) in $\mathrm{D}_{2} \mathrm{O}$ at pH^{*} 8.2.

Fig.S3 Molecular modeling conformations of other model drugs in KAS separation system. The hydrogen bonding is indicated by green dotted line, the π interaction is indicated by orange solid line. C grey, H white, O red, N blue, S yellow, Cl green, F light blue.

