Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2023

## **Supplementary Information**

# Solvent Effects of N, N-dimethylformamide and Methanol on Mass Spectrometry Imaging by Tapping-mode Scanning Probe Electrospray Ionization

Yoichi Otsuka<sup>1,2,3</sup>, Nijiho Ote<sup>4</sup>, Mengze Sun<sup>1</sup>, Shuichi Shimma<sup>5</sup>, Osamu Urakawa<sup>6</sup>,

Shinichi Yamaguchi<sup>7</sup>, Tomoya Kudo<sup>7</sup>, Michisato Toyoda<sup>1,3</sup>

<sup>1</sup>Department of Physics, Graduate School of Science, Osaka university <sup>2</sup> JST PREST

<sup>3</sup> Forefront Research Center, Graduate School of Science, Osaka university
 <sup>4</sup> Department of Biological Science, School of Science, Osaka university
 <sup>5</sup> Department of Biotechnology, Graduate School of Engineering, Osaka university
 <sup>6</sup> Department of Chemistry, Graduate School of Science, Osaka university
 <sup>7</sup> Shimadzu Corporation

| Fig. S1. Optical microscopy images of mouse brain tissue sections2                                |
|---------------------------------------------------------------------------------------------------|
| Fig. S2. Results of MSI of mouse brain sections                                                   |
| Fig. S3. The ROIs of mouse brain sections7                                                        |
| Fig. S4. Comparison of mass spectra of mouse brain sections8                                      |
| Fig. S5. Relationship between m/z and signal intensity ratio of ions9                             |
| Fig. S6. Fiber tracts region in mouse brain sections10                                            |
| Fig. S7. Comparison of ion images obtained for mouse brain sections classified as Category 1 10   |
| Fig. S8. Magnified images of lipid distributions in mouse brain sections11                        |
| Fig. S9. Changes in spatial resolution of ion images with different solvents                      |
| Fig. S10. Comparison of ion images obtained for mouse brain sections classified as Category 212   |
| Fig. S11. Comparison of ion images obtained for mouse brain sections classified as Category 313   |
| Fig. S12. Comparison of mass spectra of mouse brain sections14                                    |
| Fig. S13. Comparison of ion images for mouse brain sections for the check of reproducibility15    |
| Fig. S14. Molecular structure of lipids used for the analysis with Hansen solubility parameters16 |
| Table S1. Assignment results for lipids (used in Figs. 2, 3, 4, S7, S12, S13).17                  |
| Table S2. Assignment results for lipids.    17                                                    |
| Table S3. List of equipments used in t-SPESI system.    22                                        |
| Table S4. Experimental condition for checking the reproducibility    23                           |
| Table S5. Hansen solubility parameters of solvents <sup>1,2</sup> 23                              |
| Table S6. Hansen solubility parameters of lipids <sup>3</sup> 23                                  |
| Table S7. Ra of solvents with lipids    23                                                        |
| Section S1. Estimation of capillary number24                                                      |
| Fig. S15. Time variation of acceleration, speed and displacement of the probe tip24               |
| Fig. S16. Relationship between the surface tension and the stretching time of the liquid bridge25 |
| Table S8. The stretch time of the liquid bridge and the probe-sample distance                     |



Fig. S1. Optical microscopy images of mouse brain tissue sections.

(a), (b) and (c) show mouse brain tissue sections prepared for MSI using DMF, the mixed solvent and MeOH, respectively. Scale bar = 1 mm.

### Fig. S2. Results of MSI of mouse brain sections.

List of ion images in category 1





List of ion images in category 2





List of ion images in category 3





## Fig. S3. The ROIs of mouse brain sections.

The ROIs are shown on the ion image at m/z = 830.5317 for (a) DMF, (b) the mixed solvent and (c) MeOH. fi: fimbria, cc: corpus callosum, TH: thalamus, HPF: hippocampal formation, HY: hypothalamus, CTX: cerebral cortex and CTXsp: cortical subplate



Fig. S4. Comparison of mass spectra of mouse brain sections.

(a), (b) and (c) show the average mass spectra of whole mouse brain tissue sections obtained in DMF, the mixed solvent and methanol, respectively.



**Fig. S5.** Relationship between m/z and signal intensity ratio of ions. Plots of signal intensity ratio of (a) DMF and (b) MeOH to the mixed solvent.

### Mouse, P56, Coronal

### Fig. S6. Fiber tracts region in mouse brain sections.

The purple annotated regions correspond to the fiber tracts. Adapted from Allen Brain Atlas. (http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960236&structure=1009&x=5291.28417968 75&y=3387.2525024414062&zoom=-4&resolution=20.94&z=5)



#### Fig. S7. Comparison of ion images obtained for mouse brain sections classified as Category 1.

Comparison of ion images obtained for mouse brain sections classified as Category 1, and the averaged signal intensities of the ROIs inside the brain. The m/z values of ions, assigned lipid species, and types of adduct ions are shown. Scale bar = 1 mm.



### Fig. S8. Magnified images of lipid distributions in mouse brain sections.

Region names were added to Fig. 3(r) of the main manuscript. HPF: hippocampal formation, fi: fimbria, CP: caudoputamen and TH: thalamus.



Fig. S9. Changes in spatial resolution of ion images with different solvents.

The ion images of m/z 848.6406 with (a) DMF, (b) Mixture and (c) MeOH. The signal intensity profiles corresponding to the white lines in the figures are shown in (d). With Mixture and MeOH, the signal difference between fimbria (fi) and adjacent lateral ventricle (VL) (red triangles) and the signal of localized lipids inside caudoputamen (CP) (black triangles) were obtained. On the other hand, it was difficult to visualize their spatial distribution when DMF was used.



Fig. S10. Comparison of ion images obtained for mouse brain sections classified as Category 2. Comparison of ion images obtained for mouse brain sections classified as Category 1, and the averaged signal intensities of the ROIs inside the brain. The m/z values of ions, assigned lipid species, and types of adduct ions are shown. Scale bar = 1 mm.





Comparison of ion images obtained for mouse brain sections classified as Category 3, and the averaged signal intensities of the ROIs inside the brain. The m/z values of ions, assigned lipid species, and types of adduct ions are shown. Scale bar = 1 mm.



Fig. S12. Comparison of mass spectra of mouse brain sections.

(a), (b) and (c) show the average mass spectra of whole mouse brain tissue sections obtained in DMF, the mixed solvent and methanol, respectively. The different probes, brain sections and solvents from the measurements as shown in Fig. S4. were used.



Fig. S13. Comparison of ion images for mouse brain sections for the check of reproducibility. The m/z values of ions, assigned lipid species, and types of adduct ions are shown. Scale bar = 1 mm.



**Fig. S14.** Molecular structure of lipids used for the analysis with Hansen solubility parameters. (a) PC 34:1 (16:0/18:1), (b) PE 34:2 (16:0/18:2) and (c) SM 34:1 (d18:1/16:0).

| Category | Measured $m/z$ | Matched $m/z$ | Delta ppm | Name           | Ion                 |
|----------|----------------|---------------|-----------|----------------|---------------------|
| 1        | 804.6336       | 804.6324      | 1.5       | HexCer 40:2;O2 | [M+Na] <sup>+</sup> |
| 1        | 814.6286       | 814.6320      | 4.2       | PC 38:2        | $[M+H]^+$           |
| 1        | 816.6471       | 816.6477      | 0.7       | PC 38:1        | $[M+H]^+$           |
| 1        | 820.6092       | 820.6063      | 3.5       | HexCer 40:2;O2 | $[M+K]^{+}$         |
| 1        | 832.6630       | 832.6637      | 0.8       | HexCer 42:2;O2 | [M+Na] <sup>+</sup> |
| 1        | 848.6406       | 848.6376      | 3.5       | HexCer 42:2;O2 | $[M+K]^+$           |
| 1        | 852.5877       | 852.5879      | 0.2       | PC 38:2        | $[M+K]^{+}$         |
| 1        | 854.6048       | 854.6036      | 1.4       | PC 38:1        | $[M+K]^+$           |
| 2        | 764.5227       | 764.5225      | 0.3       | PE 38:6        | $[M+H]^+$           |
| 2        | 792.5530       | 792.5538      | 1.0       | PE 40:6        | $[M+H]^+$           |
| 2        | 802.4786       | 802.4784      | 0.2       | PE 38:6        | $[M+K]^+$           |
| 2        | 804.5510       | 804.5514      | 0.5       | PC 36:4        | [M+Na] <sup>+</sup> |
| 2        | 820.5247       | 820.5253      | 0.7       | PC 36:4        | $[M+K]^+$           |
| 2        | 830.5137       | 830.5097      | 4.8       | PE 40:6        | $[M+K]^+$           |
| 2        | 844.5247       | 844.5253      | 0.7       | PC 38:6        | $[M+K]^+$           |
| 2        | 856.5801       | 856.5827      | 3.0       | PC 40:6        | [M+Na] <sup>+</sup> |
| 3        | 731.6058       | 731.6061      | 0.4       | SM 36:1;O2     | $[M+H]^+$           |
| 3        | 734.5697       | 734.5694      | 0.4       | PC 32:0        | $[M+H]^+$           |
| 3        | 753.5858       | 753.5881      | 3.1       | SM 36:1;O2     | [M+Na] <sup>+</sup> |
| 3        | 756.5514       | 756.5514      | 0.0       | PC 32:0        | [M+Na] <sup>+</sup> |
| 3        | 760.5846       | 760.5851      | 0.7       | PC 34:1        | $[M+H]^+$           |
| 3        | 769.5602       | 769.5620      | 2.3       | SM 36:1;O2     | $[M+K]^+$           |
| 3        | 772.5250       | 772.5253      | 0.4       | PC 32:0        | $[M+K]^+$           |
| 3        | 782.5667       | 782.5670      | 0.4       | PC 34:1        | [M+Na] <sup>+</sup> |
| 3        | 798.5405       | 798.5410      | 0.6       | PC 34:1        | $[M+K]^+$           |

Table S1. Assignment results for lipids (used in Figs. 2, 3, 4, S7, S12, S13).

## Table S2. Assignment results for lipids.

| Category | Measured $m/z$ | Matched $m/z$ | Delta ppm | Name      | Ion                 |
|----------|----------------|---------------|-----------|-----------|---------------------|
| 1        | 607.4687       | 607.4697      | 1.6       | PA O-30:0 | $[M+H]^+$           |
| 1        | 607.4687       | 607.4698      | 1.8       | DG 32:0   | $[M+K]^{+}$         |
| 1        | 617.5101       | 617.5115      | 2.3       | DG 34:1   | [M+Na] <sup>+</sup> |
| 1        | 631.4690       | 631.4697      | 1.1       | PA O-32:2 | $[M+H]^+$           |
| 1        | 631.4690       | 631.4698      | 1.3       | DG 34:2   | $[M+K]^+$           |

| 1 | 633.4849 | 633.4854 | 0.8 | PA O-32:1 | $[M+H]^+$           |
|---|----------|----------|-----|-----------|---------------------|
| 1 | 633.4849 | 633.4855 | 0.9 | DG 34:1   | $[M+K]^+$           |
| 1 | 641.6189 | 641.6207 | 2.8 | WE 42:1   | [M+Na] <sup>+</sup> |
| 1 | 655.4704 | 655.4698 | 0.9 | DG 36:4   | $[M+K]^+$           |
| 1 | 655.4704 | 655.4697 | 1.1 | PA O-34:4 | $[M+H]^+$           |
| 1 | 655.4704 | 655.4673 | 4.7 | PA O-32:1 | [M+Na] <sup>+</sup> |
| 1 | 659.4999 | 659.5010 | 1.7 | PA O-34:2 | $[M+H]^+$           |
| 1 | 659.4999 | 659.5011 | 1.8 | DG 36:2   | $[M+K]^+$           |
| 1 | 661.5162 | 661.5167 | 0.8 | PA O-34:1 | $[M+H]^+$           |
| 1 | 661.5162 | 661.5168 | 0.9 | DG 36:1   | $[M+K]^+$           |
| 1 | 679.4689 | 679.4697 | 1.2 | PA O-36:6 | $[M+H]^+$           |
| 1 | 679.4689 | 679.4698 | 1.3 | DG 38:6   | $[M+K]^+$           |
| 1 | 679.4689 | 679.4673 | 2.4 | PA O-34:3 | [M+Na] <sup>+</sup> |
| 1 | 681.4844 | 681.4854 | 1.5 | PA O-36:5 | $[M+H]^+$           |
| 1 | 681.4844 | 681.4855 | 1.6 | DG 38:5   | $[M+K]^+$           |
| 1 | 681.4844 | 681.4830 | 2.1 | PA O-34:2 | [M+Na] <sup>+</sup> |
| 1 | 683.5004 | 683.5010 | 0.9 | PA O-36:4 | $[M+H]^+$           |
| 1 | 683.5004 | 683.5011 | 1.0 | DG 38:4   | $[M+K]^+$           |
| 1 | 683.5004 | 683.4986 | 2.6 | PA O-34:1 | [M+Na] <sup>+</sup> |
| 1 | 706.5393 | 706.5381 | 1.7 | PC 30:0   | $[M+H]^+$           |
| 1 | 707.4996 | 707.4986 | 1.4 | PA O-36:3 | [M+Na] <sup>+</sup> |
| 1 | 707.4996 | 707.5010 | 2.0 | PA O-38:6 | $[M+H]^+$           |
| 1 | 707.4996 | 707.5011 | 2.1 | DG 40:6   | $[M+K]^+$           |
| 1 | 711.5329 | 711.5324 | 0.7 | DG 40:4   | [M+K] <sup>+</sup>  |
| 1 | 711.5329 | 711.5323 | 0.8 | PA O-38:4 | $[M+H]^+$           |
| 1 | 711.5329 | 711.5299 | 4.2 | PA O-36:1 | [M+Na] <sup>+</sup> |
| 1 | 724.5259 | 724.5252 | 1.0 | PE O-34:2 | [M+Na] <sup>+</sup> |
| 1 | 724.5259 | 724.5276 | 2.3 | PE O-36:5 | $[M+H]^+$           |
| 1 | 728.5598 | 728.5589 | 1.2 | PE O-36:3 | $[M+H]^+$           |
| 1 | 728.5598 | 728.5565 | 4.5 | PE O-34:0 | [M+Na] <sup>+</sup> |
| 1 | 732.5523 | 732.5538 | 2.0 | PC 32:1   | $[M+H]^+$           |
| 1 | 739.4672 | 739.4675 | 0.4 | PA 36:2   | $[M+K]^+$           |
| 1 | 746.6070 | 746.6058 | 1.6 | PC O-34:1 | $[M+H]^+$           |
| 1 | 750.5413 | 750.5408 | 0.7 | PE O-36:3 | [M+Na] <sup>+</sup> |
| 1 | 750.5413 | 750.5432 | 2.5 | PE O-38:6 | $[M+H]^+$           |

| 1 | 750.5856 | 750.5854 | 0.3 | HexCer 36:1;O2  | [M+Na] <sup>+</sup> |
|---|----------|----------|-----|-----------------|---------------------|
| 1 | 752.5596 | 752.5589 | 0.9 | PE O-38:5       | $[M+H]^+$           |
| 1 | 752.5596 | 752.5565 | 4.1 | PC O-33:2       | [M+Na] <sup>+</sup> |
| 1 | 752.5596 | 752.5565 | 4.1 | PE O-36:2       | [M+Na] <sup>+</sup> |
| 1 | 760.5846 | 760.5851 | 0.7 | PC 34:1         | $[M+H]^+$           |
| 1 | 766.5618 | 766.5594 | 3.1 | HexCer 36:1;O2  | $[M+K]^{+}$         |
| 1 | 786.6004 | 786.6007 | 0.4 | PC 36:2         | $[M+H]^+$           |
| 1 | 788.5025 | 788.4991 | 4.3 | PE O-38:6       | $[M+K]^{+}$         |
| 1 | 788.6164 | 788.6164 | 0.0 | PC 36:1         | $[M+H]^+$           |
| 1 | 806.6490 | 806.6480 | 1.2 | HexCer 40:1;O2  | [M+Na] <sup>+</sup> |
| 1 | 807.6331 | 807.6350 | 2.4 | SM 40:2;O2      | [M+Na] <sup>+</sup> |
| 1 | 822.6376 | 822.6371 | 0.6 | PC O-40:5       | $[M+H]^+$           |
| 1 | 822.6376 | 822.6347 | 3.5 | PC O-38:2       | [M+Na] <sup>+</sup> |
| 1 | 824.5560 | 824.5566 | 0.7 | PC 36:2         | $[M+K]^{+}$         |
| 1 | 824.5560 | 824.5552 | 1.0 | SHexCer 36:1;O3 | $[M+H]^+$           |
| 1 | 826.5714 | 826.5721 | 0.8 | PE O-42:7       | [M+Na] <sup>+</sup> |
| 1 | 826.5714 | 826.5723 | 1.1 | PC 36:1         | $[M+K]^+$           |
| 1 | 838.6172 | 838.6169 | 0.4 | HexCer 40:1;O3  | $[M+K]^+$           |
| 1 | 846.6235 | 846.6219 | 1.9 | PS 40:1         | $[M+H]^+$           |
| 1 | 855.7390 | 855.7412 | 2.6 | TG 50:1         | [M+Na] <sup>+</sup> |
| 1 | 864.6324 | 864.6325 | 0.1 | HexCer 36:1;O   | $[M+K]^{+}$         |
| 1 | 864.6324 | 864.6325 | 0.1 | HexCer 42:2;O3  | $[M+K]^{+}$         |
| 1 | 912.6183 | 912.6205 | 2.4 | SHexCer 42:2;O2 | [M+Na] <sup>+</sup> |
| 2 | 629.3561 | 629.3579 | 2.9 | PA 28:1         | $[M+K]^{+}$         |
| 2 | 725.5109 | 725.5116 | 1.0 | PA 38:4         | $[M+H]^+$           |
| 2 | 725.5109 | 725.5092 | 2.3 | PA 36:1         | [M+Na] <sup>+</sup> |
| 2 | 729.5900 | 729.5905 | 0.7 | SM 36:2;O2      | $[M+H]^+$           |
| 2 | 748.5284 | 748.5276 | 1.1 | PE O-38:7       | $[M+H]^+$           |
| 2 | 748.5284 | 748.5252 | 4.3 | PE O-36:4       | [M+Na] <sup>+</sup> |
| 2 | 770.5098 | 770.5097 | 0.1 | PC 32:1         | $[M+K]^+$           |
| 2 | 770.5098 | 770.5095 | 0.4 | PE O-38:7       | [M+Na] <sup>+</sup> |
| 2 | 776.5573 | 776.5565 | 1.0 | PE O-38:4       | [M+Na] <sup>+</sup> |
| 2 | 776.5573 | 776.5589 | 2.1 | PE O-40:7       | $[M+H]^+$           |
| 2 | 780.5500 | 780.5514 | 1.8 | PC 34:2         | [M+Na] <sup>+</sup> |
| 2 | 780.5500 | 780.5538 | 4.9 | PC 36:5         | $[M+H]^+$           |

| 2 | 796.5270 | 796.5253 | 2.1 | PC 34:2         | $[M+K]^+$           |
|---|----------|----------|-----|-----------------|---------------------|
| 2 | 796.5270 | 796.5252 | 2.3 | PE O-40:8       | [M+Na] <sup>+</sup> |
| 2 | 796.5270 | 796.5239 | 3.9 | SHexCer 34:1;O3 | $[M+H]^+$           |
| 2 | 804.4920 | 804.4940 | 2.5 | PE 38:5         | $[M+K]^{+}$         |
| 2 | 804.4920 | 804.4940 | 2.5 | PE O-38:6;O     | $[M+K]^{+}$         |
| 2 | 806.5087 | 806.5097 | 1.2 | PE 38:4         | $[M+K]^{+}$         |
| 2 | 806.5087 | 806.5097 | 1.2 | PE O-38:5;O     | $[M+K]^+$           |
| 2 | 806.5687 | 806.5694 | 0.9 | PC 38:6         | $[M+H]^+$           |
| 2 | 806.5687 | 806.5670 | 2.1 | PC 36:3         | [M+Na] <sup>+</sup> |
| 2 | 828.5546 | 828.5538 | 1.0 | PC 40:9         | $[M+H]^+$           |
| 2 | 828.5546 | 828.5514 | 3.9 | PC 38:6         | [M+Na] <sup>+</sup> |
| 2 | 830.5559 | 830.5542 | 2   | PC 36:4;O3      | $[M+H]^+$           |
| 2 | 832.5811 | 832.5827 | 1.9 | PC 38:4         | [M+Na] <sup>+</sup> |
| 2 | 832.5811 | 832.5851 | 4.8 | PC 40:7         | $[M+H]^+$           |
| 2 | 848.5524 | 848.5566 | 4.9 | PC 38:4         | $[M+K]^+$           |
| 2 | 858.5221 | 858.5256 | 4.1 | PS 40:6         | [M+Na] <sup>+</sup> |
| 2 | 870.5415 | 870.5410 | 0.6 | PC 40:7         | $[M+K]^+$           |
| 2 | 872.5546 | 872.5566 | 2.3 | PC 40:6         | $[M+K]^+$           |
| 2 | 872.5546 | 872.5566 | 2.3 | PE 43:6         | $[M+K]^+$           |
| 2 | 874.5609 | 874.5652 | 4.9 | Hex2Cer 32:0;O2 | $[M+K]^+$           |
| 2 | 878.5126 | 878.5097 | 3.3 | PE 44:10        | $[M+K]^+$           |
| 2 | 896.4833 | 896.4838 | 0.6 | PS 42:9         | $[M+K]^+$           |
| 2 | 905.6238 | 905.6242 | 0.4 | PG 44:4         | [M+Na] <sup>+</sup> |
| 2 | 911.6723 | 911.6712 | 1.2 | PG 44:1         | [M+Na] <sup>+</sup> |
| 2 | 917.6672 | 917.6630 | 4.6 | TG 56:12        | [M+Na] <sup>+</sup> |
| 3 | 602.4903 | 602.4909 | 1.0 | Cer 36:2;O2     | $[M+K]^{+}$         |
| 3 | 604.5059 | 604.5065 | 1.0 | Cer 36:1;O2     | $[M+K]^+$           |
| 3 | 754.5362 | 754.5357 | 0.7 | PC 32:1         | [M+Na] <sup>+</sup> |
| 3 | 754.5362 | 754.5381 | 2.5 | PC 34:4         | $[M+H]^+$           |
| 3 | 766.5386 | 766.5381 | 0.7 | PE 38:5         | $[M+H]^+$           |
| 3 | 766.5386 | 766.5381 | 0.7 | PE O-38:6;O     | $[M+H]^+$           |
| 3 | 766.5386 | 766.5357 | 3.8 | PE 36:2         | [M+Na] <sup>+</sup> |
| 3 | 768.5506 | 768.5514 | 1.0 | PE 36:1         | [M+Na] <sup>+</sup> |
| 3 | 768.5506 | 768.5538 | 4.2 | PE 38:4         | $[M+H]^+$           |
| 3 | 768.5506 | 768.5538 | 4.2 | PE O-38:5;O     | $[M+H]^+$           |

| 3 | 796.5821 | 796.5827 | 0.8 | PE 38:1 | [M+Na] <sup>+</sup> |
|---|----------|----------|-----|---------|---------------------|
| 3 | 796.5821 | 796.5851 | 3.8 | PE 40:4 | $[M+H]^+$           |
| 3 | 810.5989 | 810.5983 | 0.7 | PC 36:1 | [M+Na] <sup>+</sup> |
| 3 | 810.5989 | 810.6007 | 2.2 | PC 38:4 | $[M+H]^+$           |
| 3 | 883.6412 | 883.6423 | 1.2 | PG 44:4 | $[M+H]^+$           |
| 3 | 883.6412 | 883.6399 | 1.5 | PG 42:1 | [M+Na] <sup>+</sup> |

PC: phosphatidylcholines, PE: phosphatidylethanolamines, PA: phosphatidic acids, PS: phosphatidylserines, PG: phosphatidylglycerols, SM: sphingomyelins, DG: diacylglycerol, TG: triacylglycerol and HexCer: hexosylceramides.

|    | Name                              | Model                    | Manufacturer         |
|----|-----------------------------------|--------------------------|----------------------|
| 1  | Probe vibration piezo actuator    | PMF-3030                 | NTK ceratec, Japan   |
| 2  | Probe piezo actuator HV amplifier | M-26110                  | Mess-tek, Japan      |
| 3  | Photo diode                       | S5870                    | Hamamatsu photonics, |
|    |                                   |                          | Japan                |
| 4  | Laser                             | TC20                     | Neoark, Japan        |
| 5  | Band path filter                  | HMZ0660                  | Asahi optics, Japan  |
| 6  | Laser controller                  | DPS-5004                 | Neoark, Japan        |
| 7  | Lock-in amplifier                 | LI-5645                  | NF, Japan            |
| 8  | Sample motor XY stage             | OSMS(CS)2-035            | Sigma, Japan         |
| 9  | Sample motor XY stage controller  | SHOT-302GS               | Sigma, Japan         |
| 10 | Sample motor Z stage              | OSMS40-5ZF-0B            | Sigma, Japan         |
| 11 | Sample motor Z stage controller   | SHOT-702                 | Sigma, Japan         |
| 12 | Sample piezo Z stage              | MTKK08S180F30            | Mechano transformer, |
|    |                                   |                          | Japan                |
| 13 | Sample piezo Z stage HV amplifier | M-26109                  | Mess-tek, Japan      |
| 14 | Probe motor XY stage              | HPS60-20X, HPS80-50X     | Sigma, Japan         |
| 15 | Probe motor XY stage controller   | GSC-01                   | Sigma, Japan         |
| 16 | Probe motor Z stage               | OSMS20-85                | Sigma, Japan         |
| 17 | Probe motor Z stage controller    | GSC-01                   | Sigma, Japan         |
| 18 | Anti-vibration stage              | HAX-0405                 | Nihon boshink kogyo, |
|    |                                   |                          | Japan                |
| 19 | Inlet Heater controller           | MTCS                     | Misumi, Japan        |
| 20 | Inlet voltage supply              | PMX500-0.1A              | Kikusui, Japan       |
| 21 | PC                                | Precision 3630 Tower     | Dell, USA            |
| 22 | Software                          | LabVIEW 2020             | NI, USA              |
| 23 | Compact RIO                       | cRIO-9047                | NI, USA              |
| 24 | Analog input module               | NI 9215                  | NI, USA              |
| 25 | Analog output module              | NI 9263                  | NI, USA              |
| 26 | Relay module                      | NI 9482                  | NI, USA              |
| 27 | Syringe pump                      | Legato 185               | KD scientific, USA   |
| 28 | Diaphragm pump                    | DA-30D                   | ULVAC, Japan         |
| 29 | Mass flow controller              | 3665-1/4SWL-AIR-36SLM-20 | Kofloc, Japan        |
|    |                                   | °C                       |                      |

Table S3. List of equipments used in t-SPESI system.

| 29 | Mass spectrometer | LCMS-9030 | Shimadzu, Japan      |
|----|-------------------|-----------|----------------------|
| 30 | Precolumn Filter  | A-355     | Upchurch Scientific, |
|    |                   |           | USA                  |

### Table S4. Experimental condition for checking the reproducibility

| Solvent       | Flow rate (nL/min) | Probe oscillation Frequency (Hz) | Solvent voltage (kV) |
|---------------|--------------------|----------------------------------|----------------------|
| MeOH          | 35                 | 684.9                            | 5                    |
| Mixed solvent | 35                 | 684.2                            | 5                    |
| DMF           | 35                 | 690.1                            | 5                    |

## Table S5. Hansen solubility parameters of solvents<sup>1,2</sup>.

|               | $\delta_{ m D}$ | $\delta_{ m P}$ | $\delta_{ m H}$ |
|---------------|-----------------|-----------------|-----------------|
| MeOH          | 15.1            | 12.3            | 22.3            |
| Mixed solvent | 16.0            | 13.0            | 16.8            |
| DMF           | 17.4            | 13.7            | 11.3            |

 $\delta_{\rm D}$ ,  $\delta_{\rm P}$ , and  $\delta_{\rm H}$  correspond to the London dispersion force term, dipole-to-dipole force term, and hydrogen bonding force term in the Hansen solubility parameter, respectively.

Table S6. Hansen solubility parameters of lipids<sup>3</sup>

| Lipids          | $\delta_{ m D}$ | $\delta_{ m P}$ | $\delta_{ m H}$ | R <sub>0</sub> |
|-----------------|-----------------|-----------------|-----------------|----------------|
| PC (16:0/18:1)  | 16.1            | 6.4             | 9.1             | 10             |
| PE (16:0/18:2)  | 16.2            | 7.1             | 9.8             | 10             |
| SM (d18:1/16:0) | 16.1            | 9.6             | 11.4            | 10             |

## Table S7. $R_a$ of solvents with lipids

| Ra            | PC 34:1 | PE 34:2 | SM 34:1 |
|---------------|---------|---------|---------|
| MeOH          | 14.6    | 13.7    | 11.4    |
| Mixed solvent | 10.1    | 9.2     | 6.4     |
| DMF           | 8.1     | 7.2     | 4.9     |

#### Section S1. Estimation of capillary number

Capillary number (Ca) is a dimensionless number expressed by the following equation.

$$Ca = U\mu/\gamma$$

Where, U,  $\mu$  and  $\gamma$  are the stretching speed, viscosity, surface tension of the solvent, respectively. The values for  $\mu$  and  $\gamma$  were estimated from experimental values. U was estimated with the following contents.

### Estimation of stretching speed of liquid bridge

We used the time variation of the probe tip velocity which was determined from the resonant frequency and amplitude of the probe oscillation and the time to break the liquid bridge on the probe tip. The probe oscillates at the resonant frequency, and the displacement (y(t)), velocity (v(t)) and acceleration (a(t)) of the probe tip are given by the equations below.

$$y(t) = A \sin(\omega t)$$
$$v(t) = A\omega \cos(\omega t)$$
$$a(t) = -A\omega^{2} \sin(\omega t)$$
$$\omega = 2\pi f$$

Fig. S15 shows the values of y(t), v(t) and a(t) for the probe which is oscillation at 700 Hz of resonant frequency with 0.5 mm of oscillation amplitude.



Fig. S15. Time variation of acceleration, speed and displacement of the probe tip.

The time to stretch and break the liquid bridge at the probe end was estimated. We have previously measured the breaking time of liquid bridges using stationary probes<sup>4</sup>. Using aqueous solutions of methanol, ethanol, and 2-propanol, we varied the distance between the probe tip and the glass substrate coated with Rhodamine B and measured the formation and breaking time of the liquid bridges during a single contact and retraction. The results showed that the breaking time of the liquid bridge was directly correlated with the surface tension of the solvent (Fig. S16). In this study, the stretching distance of the

liquid bridge (Table S8) was estimated from the breaking time of the liquid bridge and the speed of the probe<sup>4</sup>.



Fig. S16. Relationship between the surface tension and the stretching time of the liquid bridge.

| Solvent (60 % of<br>alcohol, 0.1% formic<br>acid) | Surface tension<br>(mN/m) | Viscosity (mPa•<br>sec) | Stretch time<br>(sec) | Stretch distance<br>(µm) |
|---------------------------------------------------|---------------------------|-------------------------|-----------------------|--------------------------|
| MeOH/Water                                        | 35.5                      | 1.62                    | 0.384                 | 58                       |
| EtOH/Water                                        | 30.2                      | 2.52                    | 0.305                 | 47                       |
| PrOH/Water                                        | 25.3                      | 3.7                     | 0.155                 | 24                       |

Table S8. The stretch time of the liquid bridge and the probe-sample distance.

The surface tensions of DMF, the mixed solvent and MeOH are 36.2, 29.8 and 23.3 mN/m, respectively. These values are close to the surface tensions of aqueous MeOH, aqueous ethanol, and aqueous 2-propanol, respectively; thus, the stretch distances of these solvents were used for approximation. The maximum speed of the probe tip was estimated from the displacement of the probe tip corresponding to the stretch distance.

### References

- 1 L. Paseta, G. Potier, S. Abbott and J. Coronas, Org. Biomol. Chem., 2015, 13, 1724–1731.
- 2 S. Zhang, C. Campagne and F. Salaün, *Appl. Sci.*, 2019, 9, 402.
- 3 D. Nakamura, M. Hirano and R. Ohta, *Chem. Commun.*, 2017, **53**, 4096–4099.
- 4 B. Kamihoriuchi, Y. Otsuka, A. Takeuchi, F. Iwata and T. Matsumoto, *Mass Spectrom.*, 2019, 7, S0078–S0078.