SUPPLEMENTARY MATERIAL

Rapid evaporative ionization mass spectrometry (REIMS) combined with chemometrics for real-time beer analysis

Victor Gustavo Kelis Cardoso^a, Guilherme Post Sabin^{a,b}, and Leandro Wang Hantao^{*a}

Sample code	Brand code	Туре	Storage	Origin country	
ALM	1	Premium	Aluminium can	Brazil	
AMS	2	Premium	Aluminium can	Brazil	
ATO	3	Standard	Glass bottle	Brazil	
ATS	4	Standard	Aluminium can	Brazil	
BVR	5	Standard	Aluminium can	Brazil	
BOH	6	Premium	Aluminium can	Brazil	
BCL	7	Standard	Aluminium can	Brazil	
BCG	8	Standard	Glass bottle	Brazil	
BEL	9	Premium	Glass bottle	Brazil	
BEW	10	Standard	Glass bottle	Brazil	
BUD	11	Standard	Glass bottle	Brazil	
CAR	12	Standard	Aluminium can	Brazil	
COL	13	Standard	Aluminium can	Brazil	
COR	14	Standard	Glass bottle	Mexico	
EAI	15	Premium	Glass bottle	Brazil	
EPA	16	Premium	Aluminium can	Brazil	
EPI	17	Premium	Aluminium can	Brazil	
EWB	18	Standard	Glass bottle	Brazil	
EWE	19	Standard	Glass bottle	Brazil	
EST	20	Standard	Glass bottle	Spain	
HNK	21	Premium	Glass bottle	Brazil	
IMP	22	Premium	Glass bottle	Brazil	
ITA	23	Standard	Glass bottle	Brazil	
ITM	24	Standard	Aluminium can	Brazil	
PTR	25	Standard	Aluminium can	Brazil	
PTO	26	Premium	Glass bottle	Brazil	
SCH	27	Standard	Aluminium can	Brazil	
SEM	28	Premium	Glass bottle	Brazil	
SKP	29	Premium	Aluminium can	Brazil	
SKO	30	Standard	Aluminium can	Brazil	
SOL	31	Standard	Aluminium can	Brazil	
STA	32	Standard	Glass bottle	Brazil	

 Table S1. Information about samples.

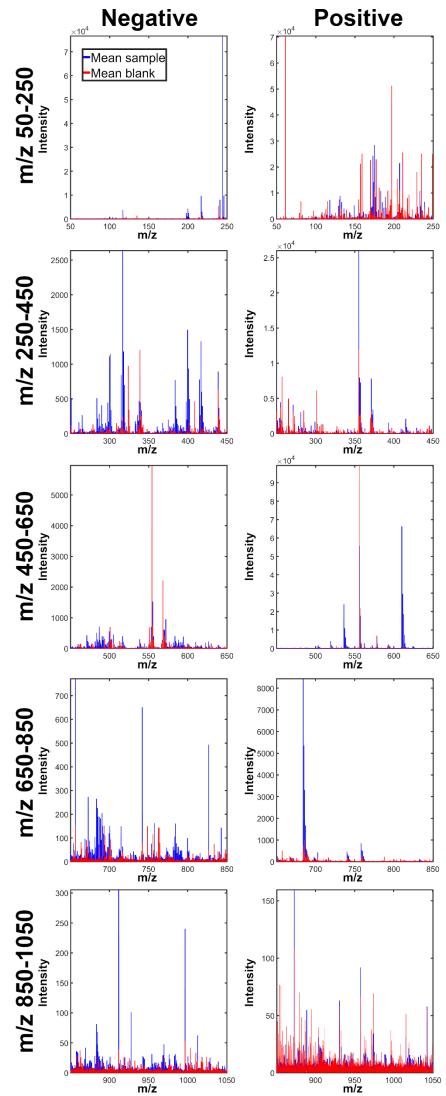
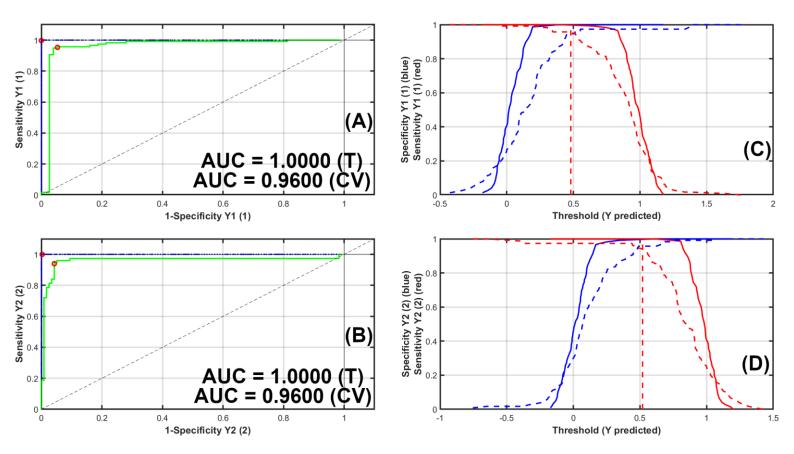
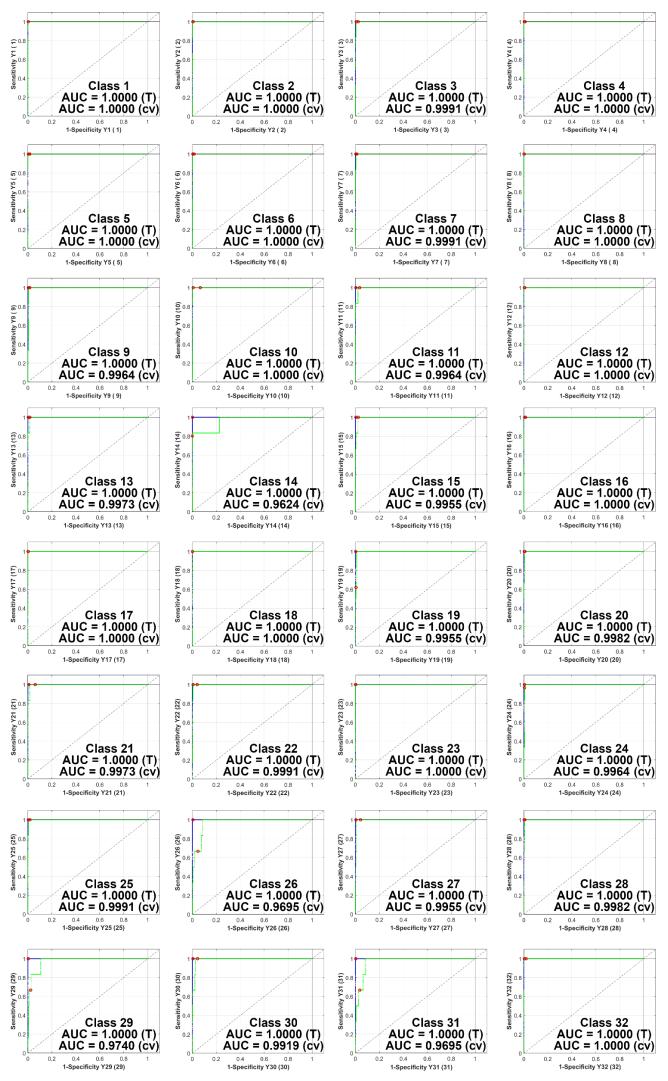




Figure S1. Comparison between mean spectra and mean blank in different spectral ranges in both modes.

Figure S2. Type model: ROC curves of (a) standard American lagers and (b) premium American lagers, being blue lines of training step (T) and green lines of cross-validation (CV). Estimated responses according to threshold of (c) standard American lagers and (d) premium American lagers, being solid lines of training step, dashed lines of cross-validation, blue lines of specificity and red lines of sensitivity.

Figure S3. Brand model: ROC curves of each class, being blue lines of training step (T) and green lines of cross-validation (CV).

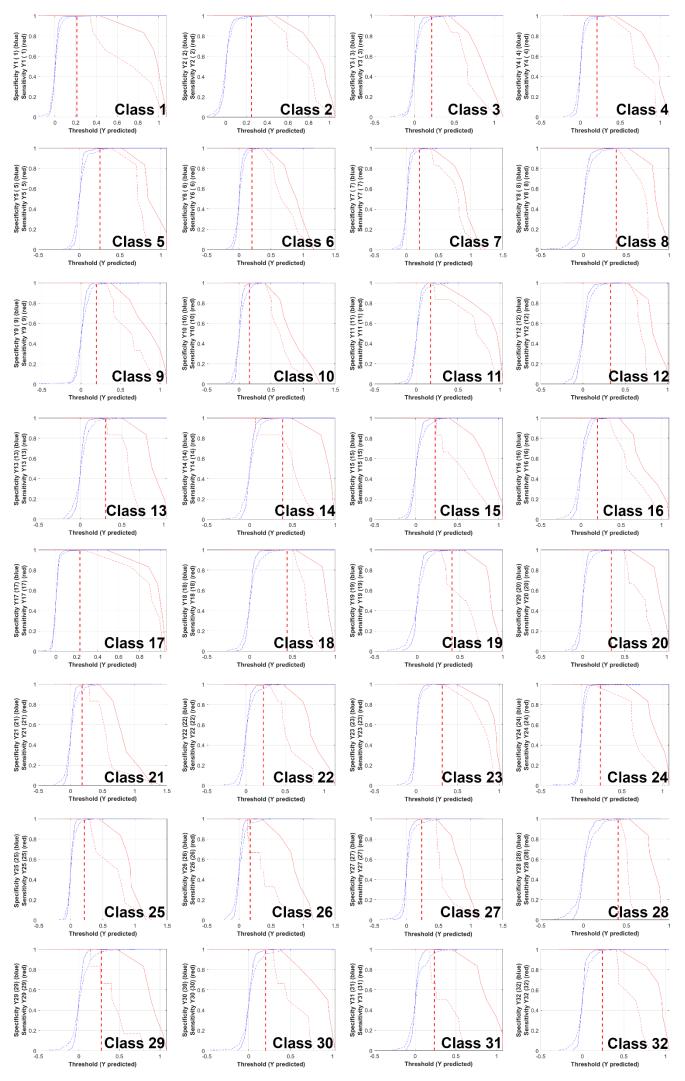
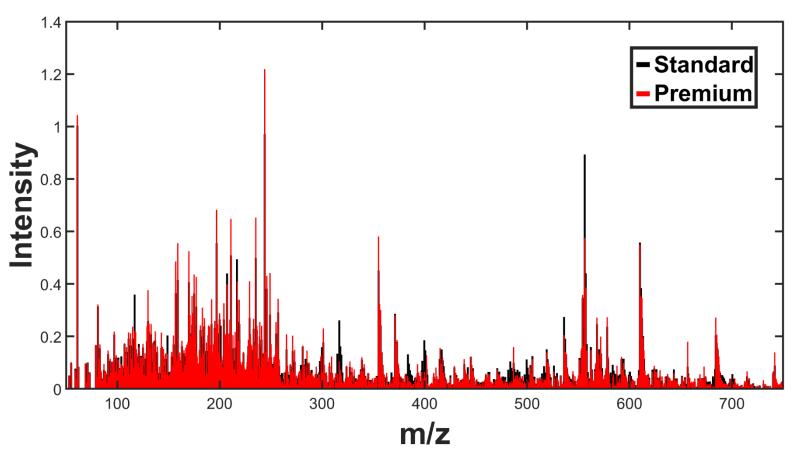



Figure S4. Brand model: Estimated responses according to threshold of each class, being solid lines of training step, dashed lines of cross-validation, blue lines of specificity and red lines of sensitivity.

Figure S5. Comparison between mean combined spectra of standard American lagers and premium American lagers.

Table S2. Assignment	of the most intense VIP	scores of both models for	or positive ionization mode.

			Positive			
Adduct type	Accurate mass	Exact mass	Empirical formula	DBE	Error (ppm)	Model
$[M+H]^+$	61.0637	61.0640	CH ₇ N ₃	0	-4.87	Brand
[M+Na] ⁺	173.0164	173.0174	C ₃ H ₆ N ₂ O ₅ Na	1.5	-6.01	Brand
[M+Na] ⁺	175.0374	175.0371	C ₈ H ₈ O ₃ Na	4.5	1.64	Brand
$[M+H]^{+}$		177.0790	C ₁₀ H ₁₁ NO ₂	6	-3.27	Brand
$[M+H]^+$	177.0784	177.0776	C ₈ H ₉ N ₄ O	6.5	4.31	
[M+Na] ⁺		177.0766	C ₈ H ₁₂ NO ₂ Na	3	10.32	
$[M+H]^+$	183.0412	183.0406	C7H7N2O4	5.5	3.38	Both
[M+Na] ⁺	185.0421	185.0426	C ₆ H ₁₀ O ₅ Na	1.5	-2.66	Both
-	196.9477	-	-	-	-	Both
[M+Na] ⁺		207.1725	C ₁₂ H ₂₄ ONa	0.5	0	
$[M+H]^+$	207.1725	207.1735	$C_{12}H_{21}N_3$	4	-5.06	Brand
[M+Na] ⁺	229.1429	229.1429	C ₁₁ H ₁₈ N ₄ Na	4.5	0	
$[M+H]^+$		229.1426	$C_{10}H_{19}N_3O_3$	3	1.13	Brand
[M+H] ⁺		229.1440	C ₁₂ H ₂₁ O ₄	2.5	-4.73	
-	233.0847	-	-	-	-	Brand
$[M+H]^+$		235.2062	C ₁₆ H ₂₇ O	3.5	-1.66	
$[M+H]^+$	235.2058	235.2048	C14H25N3	4	4.05	Both
[M+Na] ⁺		235.2038	C ₁₄ H ₂₈ ONa	0.5	8.57	
$[M+H]^+$		249.1127	C14H17O4	6.5	-1.54	D 1
[M+Na] ⁺	249.1123	249.1130	C ₁₅ H ₁₆ NONa	8	-0.66	Both
[M+Na] ⁺		301.1376	C ₁₁ H ₂₂ N ₂ O ₆ Na	1.5	-2.51	
$[M+H]^+$	301.1368	301.1386	$C_{11}H_{19}N_5O_5$	5	-6.04	Туре
[M+Na] ⁺	355.0622	355.0655	C ₁₄ H ₁₂ N ₄ O ₆ Na	10.5	-9.16	Brand
-	536.1676	-	-	-	-	Both
[M+H] ⁺	556.2771	556.2771	C ₂₈ H ₃₈ N ₅ O ₇	12.5	0	Both
[M+Na] ⁺		557.2753	C ₃₂ H ₄₀ NO ₆ Na	13	3.89	
[M+Na] ⁺	557.2775	557.2740	C ₃₀ H ₃₈ N ₄ O ₅ Na	13.5	6.30	Brand
-	610.1825	-	-	_	-	Both
-	611.1830	-	-	-	-	Brand
-	612.1834	-	-	-	-	Both

 Table S3. Assignment of the most intense VIP scores of both models for negative ionization mode.

Negative						
Adduct type	Accurate mass	Exact mass	Empirical formula	DBE	Error (ppm)	Model
-	134.8950	-	-	-	-	Brand
-	200.8644	-	-	-	-	Brand
-	216.8515	-	-	-	-	Brand
-	238.8413	-	-	-	-	Brand
-	240.9022	-	-	-	-	Brand
-	243.9035	-	-	-	-	Both
$[M+H]^+$	554.2615	554.2615	$C_{28}H_{36}N_5O_7$	13.5	0	Brand