Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

A highly sensitive impedimetric sensor based on MIP biomimetic for the detection of Enrofloxacin

Phi Van Toan¹, Nguy Phan Tin², Truong T N Lien^{1,2*}

¹ School of Engineering Physics, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hai Ba Trung dist., Hanoi, Vietnam

² Vietnam-Korea Institute of Science and Technology, 304, 113 Tran Duy Hung, Cau Giay dist., Hanoi, Vietnam

* Correspondence: truongtnlien@gmail.com/ ttnlien@most.gov.vn; Tel.: +84-912-640-015

Figure S1. A cyclic voltammograms of AuNPs electrodeposition on SPCE

Figure S2. Scanning electron microscopy (SEM) images of (a) in situ AuNPs on SPCE formed using a cyclic voltammetry (CV) method for 20 cycles; (b) MIP membrane on AuNPs/SPCE

Figure S3. Cyclic voltammograms during the ENRO-MIP electro-polymerization on the AuNPs/SPCE at a scan rate of 50 mV/s.

Figure S4. The Nyquist plots of impedance spectra corresponding to modification steps of SPCE for the development of the MIP sensor: a) bare SPCE; b) AuNPs/SPCE; c) ENRO-imprinted MIP/AuNPs/SPCE; d) ENRO-removal MIP/AuNPs/SPCE and rebinding of ENRO (at concentration of 5 ng/mL).

Figure S5. Stability of MIP sensors stored for different time

Figure S6. The Nyquist plots of impedance spectra corresponding to the response of ENRO-MIP sensor when exposing to aquaculture water samples containing different concentrations.

Ca	Carbon		P-ATP		ENRO antibody		ENRO antigen	
1337	D-band	1081	$\nu_{c-c} + \nu_{c-s}$	1272	Amida III	1235	β_{C-H}	
1570	G-band	1143	$\nu_{c\text{-s}} + \beta_{C\text{-H}}$	1349	Annue m	1388	v _{o-c-o}	
1379		1181		1428	β_{C-H2}	1481	α_{ccc}	

Table S1: The specific peaks of Raman corresponding to the chemical bonds of molecules

Table S2: Comparison of different methods for the detection of ENR in terms of the limit of detection.

Method	LOD	year	Ref
	(ng/ mL)		
Electrochemical sensor based on modified	34.14	2018	[1]
electrode containing cadmium sulfide (CdS)			
nanoparticles (NPs)			
Nitrogen-doped fluorescent carbon dots.	Approx. 176	2019	[2]
Ag-based surface-enhanced Raman scattering	Approx. 39	2019	[3]
imprinted membranes.			
Chemiluminescence system coupled with	Approx.	2019	[4]
molecularly imprinted polymers	0.04		
Molecularly imprinted electrochemiluminescence	Approx.	2021	[5]
sensor	0.01		
MIP combining with antibody	0.05		This
			work