Supporting Information

Thioglycolic acid-modified AuNPs as a colorimetric sensor for the rapid

determination of the pesticide chlorpyrifos

Hongwei Zhang^a, Yuan Qu^a, Yanchao Zhang^a, Yumei Yan^a and Haixiang Gao^{*a}

Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, China

Corresponding authors

*E-mail: hxgao@cau.edu.cn

Fig. S1. Dependence of the temperature on the absorption ratio (A_{690}/A_{530}) of TGA@AuNPs in the (a) absence and (b) presence of 0.01 µg·L⁻¹ (c) presence of 0.05 µg·L⁻¹ chlorpyrifos.

Fig. S2. Dependence of the modification time of thioglycolic acid on the absorption (A_{530}) of AuNPs.

Fig. S3. Dependence of the concentration of TGA on the absorption ratio (A_{690}/A_{530}) of TGA@AuNPs.

Fig. S4. Dependence of the pH on the absorption ratio (A_{690}/A_{530}) of TGA@AuNPs.

Fig. S5. Dependence of the incubation time on the absorption ratio (A_{690}/A_{530}) of TGA@AuNPs in the (A) absence and (B) presence of 0.01 µg·L⁻¹ (C) presence of 0.05 µg·L⁻¹ chlorpyrifos.

Fig. S6. (A)Dependence of the concentration of NaCl on the absorption ratio (A_{690}/A_{530}) of TGA@AuNPs in the (a) presence of 30.0 µg·L⁻¹ (b) presence of 0 µg·L⁻¹ chlorpyrifos. (B) System changes under the addition of 0 µg·L⁻¹ chlorpyrifos. (C) System changes under the addition of 30.0 µg·L⁻¹ chlorpyrifos

Table S1. Zeta Potential of gold nanoparticles and thioglycolic acid @goldnanopaticles based colorimetric sensor in the absence and presence of 50.0 μ g·L-1

Samples	AuNPs	TGA@AuNPs	TGA@AuNPs+Chlorpyrifos(50µg·L-1)
Zeta Potential (mV)	-10.8±1.2	-3.7±3.3	0.9±1.6
Mean±SD, n=3			

Methods	Linear range (µg/L)	LOD (µg/L)	Time	Recovery (%)	Ref.
GC-MS	2.50-501.34	1.6	13.3 min	83-95	1
Spectrofluorimetric	0.50-2.50	0.15	20 s	102.6– 104.2	2
DLLME/HPLC-UV- Vis	0.27-1090.32	5.01	5 min	87.3– 117.6	3
DPV	0.007-35058	0.09	10 s	NM	4
PEC	17.53-3505.86	0.34	15 min	96– 101.2	5
MIP/Flow cytometry	20.02-200.18	9.99	120 min	92.8	6
Colorimetry	NM	5.12	NM	96.2- 105.6	7
Colorimetry	0.4-100	20	2 min	98-104.3	This work

Table S2. Comparison with other methods based on the sensor for chlorpyrifos detection

NM: Not mentioned

References:

1 RACKE K D, Organophosphates Chemistry, Fate, and Effects, 1992, 47-78.

2 Çubuk, S., Kök Yetimoğlu, E., Çalışkan, A. and Vezir Kahraman, M, *Microchemical Journal*, 2021, **165**, 106098.

3 Handajani, U., Y. Raharjo and B. Wantoro, *Journal of Chemical Technology and Metallurgy*, 2017, **52**, 1056-1061.

4 Fischer, J., A. Hájková., M. Pereira., M. Křeček., V. Vyskočil and J. Barek, *Electrochimica Acta*, 2016, **216**, 510-516.

5 Wang, P., W. Dai, L. Ge, M. Yan, S. Ge and J. Yu, Analyst, 2013, 138, 939-945.

6 Zhang, H., P. Wang, Q. Zhou and Y. Wang, Analytical Letters, 2018, 51, 921-934.

7 Liu, Y., T. Li, G. Yang, Y. Deng, X. Mou and N. He, *Chinese Chemical Letters*, 2021, DOI: 10.1016/j.cclet.2021.11.025