Supplementary Information

Analyses on intracellular Fe³⁺ with a rhodamine probe: "turn-

on" response, specific recognition and bioimaging

Zhao Cheng^{a,*}, Xiaojing Liu^b, Lei Zheng^a, Yue Xu^a, Hao He^a

^a School of Pharmacy, Xi'an Medical University, Xi'an Shaanxi 710021, PR China.

^b College of Chemistry & Materials Science, Northwest University, Xi'an Shaanxi

710127, PR China

* Corresponding author: Zhao Cheng, chengzhao@xiyi.edu.cn.

Contents:

Synthesis of rhodamine B acyl chloride

Table S1Crystallographic data of J3.

Fig. S1 ESI-MS of J3.

Fig. S2 IR of J3.

Fig. S3 1 H NMR of **J3**.

Fig. S4 ¹³C NMR of **J3**.

Fig. S5 UV-vis absorption selectivity and competition of J3 towards Fe^{3+} in Fe^{3+} -competing ions coexisting systems.

Fig. S6 UV-vis absorption titration of J3 by Fe^{3+} .

Synthesis of rhodamine B acyl chloride

Rhodamine B (1.59 g, 3.32 mmol) was dissolved in 15 mL 1,2-dichloroethane, then phosphorus oxychloride (1 mL, 10.7 mmol) was added dropwise to the rhodamine B solution with stirring. The reaction mixture was refluxed for 4 h. After the reaction, the mixture was concentrated *in vacuo* to eliminate the leftover 1,2-dichloroethane and unreacted phosphorus oxychloride, affording rhodamine B acyl chloride.

Compound	J3
Molecular Formula	$C_{32}H_{33}N_5O_2$
Molecular Weight	519.63
Crystal system	Monoclinic
Space group	P2(1)/n
a/Å	12.828(4)
b/Å	16.694(5)
c/Å	13.040(4)
α/°	90
β/°	101.773(6)
γ/°	90
Z	4
V/Å ³	2733.9(13)
F(000)	1104
No. refs measured	13549
No.unique-refs(Rint)	4803 (0.0885)
$R_1[I>2\sigma(I)]$	0.0598
wR_2 (all data)	0.1586
Goodness of fit	0.943

Table S1 Crystallographic data of J3.

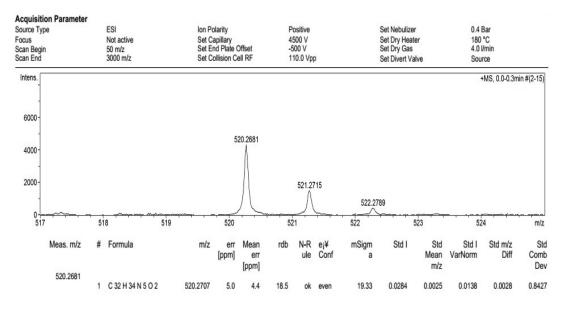


Fig. S1 ESI-MS of J3.

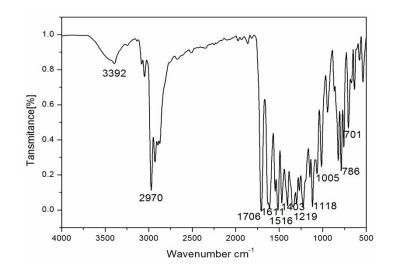
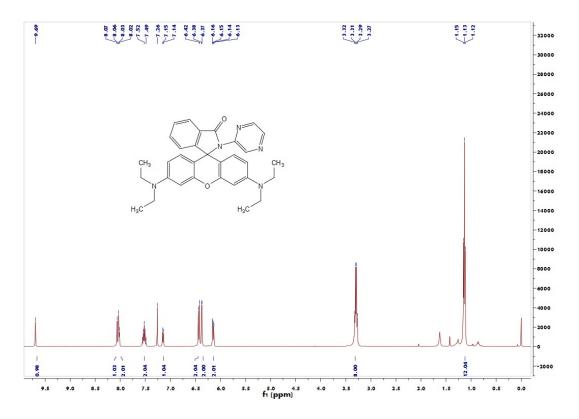
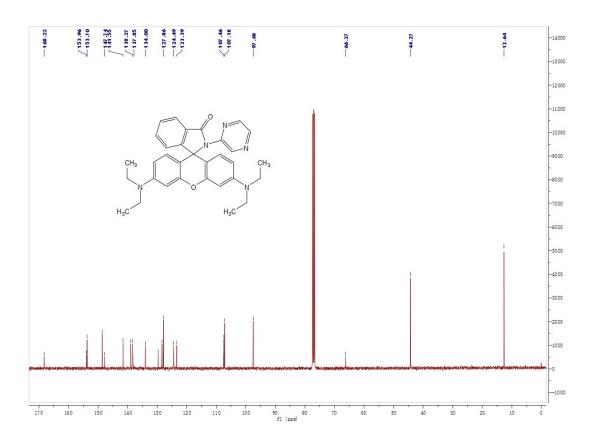




Fig. S2 IR of J3.

Fig. S4 ¹³C NMR of **J3**.

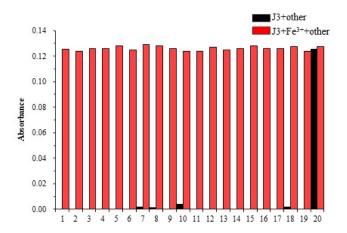


Fig. S5 UV-vis absorption selectivity and competition of J3 towards Fe³⁺ in Fe³⁺-competing ions coexisting systems.

*Black bars: absorbance of **J3** and competing ions at 523 nm.

Red bars: subsequent addition of 10 μmol L⁻¹ Fe³⁺ to the black bars-represented solutions. Metal ions (from left to right) : 1: K⁺, 2: Ca²⁺, 3: Mg²⁺, 4: Ba²⁺, 5: Mn²⁺, 6: Cu²⁺, 7: Zn²⁺, 8: Cr³⁺, 9: Hg²⁺, 10: Ag⁺, 11: Cd²⁺, 12: Ni²⁺, 13: Li⁺, 14: NH₄⁺, 15: Al³⁺, 16: Sn²⁺, 17: Co²⁺, 18: Pb²⁺, 19: Fe²⁺ and 20: Fe³⁺.

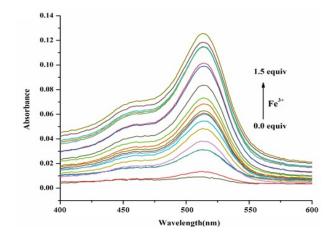


Fig. S6 UV-vis absorption titration of J3 by Fe³⁺.