Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

Supporting information

Weicheng Shi^{a,1}, Yao Gong^{a,1}, Decai Zhang^{a,} Tiantian Yang^a, Ming Yi^a, Jingyi Tan^a, Shijia Ding^b, Wei Cheng ^{a,*}

^a The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China

^b Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China

^{*} Corresponding author. E-mail address: chengwei@hospital.cqmu.edu.cn (W. Cheng).

Instruments

ARMS-PCR were carried on LightCycler® 480 Instrument II (Rothe, Co., Ltd., Germany) and Applied BiosystemsTM 7500 (Thermo Fisher Scientific, Co., Ltd., Shanghai, China). The gel electrophoresis and gel image were performed on DYY-6C electrophoresis analyzer (Liuyi Instrument Company, China) and Quantum ST4-1100, respectively. The fluorescence analysis were carried on FS5 Spectrofluorometer(Edinburgh Instruments Ltd.)

Table S1. Sequences of targets and probes used in this assay.

DNA	Sequence (5'-3')
BRAF	GATGGGACCCACTCCATCGAGATTTCACTGTAGCTAGACCAAAATCACCTATTT
V600E	TTACTGT
Wild target	
BRAF	GATGGGACCCACTCCATCGAGATTTCTCTGTAGCTAGACCAAAATCACCTATTT
V600E	TTACTGT
Mutant	
target	
K601E	GATGGGACCCACTCCATCGAGATTCCACTGTAGCTAGACCAAAATCACCTATTT
Mutant	TTACTGT
target	
V600R	GATGGGACCCACTCCATCGAGATTTCCTTGTAGCTAGACCAAAATCACCTATTT
Mutant	TTACTGT
target	
V600K	GATGGGACCCACTCCATCGAGATTTCTTTGTAGCTAGACCAAAATCACCTATTT
Mutant	TTACTGT
target	
Padlock	5po4-
probe	GACATCGATCTGGTTTTTCCTCATGCTTCTTCGGTGCCCATCATTCGATTCCTGC
	AGTTGCATTGAGGTAGCTCTAAAGA
Primer	GATGGGCACCGAAGAAGCAT
MB	DYBCY1-CGCACCCTAGCTACAGAGAAATCTCGAGGTGCG -FAM
FQ	DYBCY1-TTTTTTTTTFAM
sgRNA	CUUCACUGAUAAAGUGGAGAACCGCUUCACCAAAAGCUGUCCCUUAGGGGAU
	UAGAACUUGAGUGAAGGUGGGCUGCUUGCAUCAGCCUAAUGUCGAGAAGUG
	CUUUCUUCGGAAAGUAACCCUCGAAACAAAUUCAUUUUUCCUCUCCAAUUCU
	GCACAAGAAAGUUGCAGAACCCGAAUAGACGAAUGAAGGAAUGCAACCUAG
	CUACAGAGAAAUCUCGA

The mutation sites are in bold orange. The spacer sequences of crRNA are in bold red.

DNA extraction

AmoyDx@FFPE DNA Kit

180 μ L Buffer DTL and 20 μ L proteinase K solution was added in samples, and heated up to 56°C for 1 hour after shaking and mixing. Next, 10 μ L Buffer DES were added into the mixture and heat for 1 hour in constant temperature incubator. Then, 200 μ L Buffer DTB and 200 μ L absolute ethyl alcohol were mixed with the solution and transferred the solution into a DNA adsorption column followed by centrifuging (10000×g 1 min). After discarding filtrate, 600 μ L Buffer DW1 was added into adsorption column to wash by centrifuging. Repeat the washing step by using 600 μ L Buffer DW2. The DNA was eluted in 100 μ L Buffer DTE by centrifuging at 13000 g for 1 minute.

The cT value of the detected samples

Table S2. The cT value of the detected samples by ARMS-PCR

Sample code	CT value	Sample code	CT value
	(Malignant)		(Benign
1	15.62	19	Undetermined
2	9.84	20	Undetermined
3	23.56	21	Undetermined
4	8.25	22	Undetermined
5	12.65	23	Undetermined
6	8.62		
7	13.59		
8	22.0		
9	24.15		
10	16.62		
11	11.50		
12	7.56		
13	18.69		
14	8.84		
15	19.65		
16	13.54		
17	14.83		
18	7.98		

Table S3 Comprehensive comparison of other CRISPR-based analytical performance

Tuble 50 complementive comparison of other cities it based analytical performance						
Signaling strategy	Detection method	Target	Detec	disease/pathogen	Referen	
		Туре	tion		ces	
			limit			
Cas9 + NASBA	Colorimetric	DNA	1 fM	Zika virus	1	
dCas9 +PCR	Colorimetric	DNA	82	African Swine	2	
			aM	Fever		
Cas12a+ RPA	Fluorescence	RNA	10	SARS-CoV-2	3	

			pM		
Cas12b+LAMP	Fluorescence	DNA	1pM	Several viruses	4
Cas13a	Electrochemiluminescence	miRNA	1 fM	Various tumor	5
+EXPAR				cells	
Cas14a+RCA	Fluorescence	SNV	0.30	BRAF V600E	This
			7 fM		work

Table S4. The reproducibility of the developed biosensor of inter-assay and intra-assay in five parallel assays respectively (CmtDNA=10pmol)

Group	Parallel tests (a.u.)	Average	SD	RSD
		(a.u.)		(%)
Inter-assay	169481 ; 161415 ; 153825 ; 155884 ; 165123	161145	5773.16	3.58%
Intra-assay	167452; 167415; 168625; 163022; 162565	165815	2509.95	1.51%

- [1] Pardee K, Green A A, Takahashi M K, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266.
- [2] Wang X, Xiong E, Tian T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS nano, 2020, 14(2): 2497-2508.
- [3] Lucia C, Federico P B, Alejandra G C. An ultrasensitive, rapid, and portable coronavirus SARS-CoV-2 sequence detection method based on CRISPR-Cas12[J]. BioRxiv, 2020.
- [4] Li L, Li S, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS synthetic biology, 2019, 8(10): 2228-2237.
- [5] Zhou T, Huang R, Huang M, et al. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection[J]. Advanced science, 2020, 7(13): 1903661.