Electronic Supplementary Material

Colorimetric determination of tetracyclines based on aptamer- mediated dual regulation of gold nanoparticle aggregation and in situ silver metallization

Dingmin Liu, Pengcheng Huang*, Fang-Ying Wu*

College of Chemistry, Nanchang University, Nanchang 330031, China

*Corresponding Author: Pengcheng Huang, pchuang@ncu.edu.cn, Fang-Ying Wu, fywu@ncu.edu.cn, Tel: + 86 79183969514, Fax: + 86 79183969514.

Fig. S1 ζ -potential analysis of different mixtures. (a) AuNPs (b) Apts+AuNPs (c) Apts+Mg(NO₃)₂+AuNPs+TET. Substance concentration: 0.0317 µmol·L⁻¹ AuNPs, 0.08 µmol·L⁻¹ Apts, 500 µmol·L⁻¹ Mg(NO₃)₂, 4 µmol·L⁻¹ TET

Fig. S2 UV-vis absorption spectra of different mixtures and the corresponding photographs. (a) Random Apts+AuNPs+p-aminophenol+AgNO₃. (b) Random Apts+Mg(NO₃)₂+AuNPs +TET+paminophenol+AgNO₃. Substance concentration: 120 μ mol·L⁻¹ AgNO₃, 120 μ mol·L⁻¹ paminophenol, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 4 μ mol·L⁻¹ TET, 500 μ mol·L⁻¹ Mg(NO₃)₂

Fig. S3 High resolution XPS spectrum for Ag3d

In 9 groups of experiments, by averaging the $\Delta(A_{600}/A_{410})$ obtained for each concentration of each factor. It is not difficult to find that the optimal levels of Mg²⁺, Apt, and Ag⁺ are 500 µmol·L⁻¹, 0.08 µmol·L⁻¹, and 120 µmol·L⁻¹, respectively. At this concentration, we measured $\Delta(A_{600}/A_{410}) = 0.60$. This is better than the previous 9 sets of experiments. So Mg²⁺ = 500 µmol·L⁻¹, Apt = 0.08 µmol·L⁻¹, Ag = 120 µmol·L⁻¹ were determined.

Experiment		Fact	$\Delta(A_{600}/A_{410})$	
number	Mg ²⁺ (μmol·L ⁻¹)	Apt (µmol·L ⁻¹)	Ag ⁺ (μmol·L ⁻¹)	
1	400	0.08	80	0.56
2	400	0.10	100	0.47
3	400	0.12	120	0.39
4	500	0.08	100	0.52
5	500	0.10	120	0.50
6	500	0.12	80	0.43
7	600	0.08	120	0.39
8	600	0.10	100	0.38
9	600	0.12	80	0.47
Excellent level	500	0.08	120	0.60

Table S1 Orthogonal experiment arrangement and results

Fig. S4 When the TET concentrations are 1 μ mol·L⁻¹, 2 μ mol·L⁻¹, 5 μ mol·L⁻¹, the values of A₆₀₀/A₄₁₀ change with time. Substance concentration: 120 μ mol·L⁻¹ p-aminophenol, 120 μ mol·L⁻¹ AgNO₃, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 500 μ mol·L⁻¹ Mg(NO₃)₂

Fig. S5 When the TET concentrations is 2μ mol·L⁻¹, the values of A_{600}/A_{410} change with time. Substance temperature: 120 μ mol·L⁻¹ p-aminophenol, 120 μ mol·L⁻¹ AgNO₃, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 500 μ mol·L⁻¹ Mg(NO₃)₂

Fig. S6 (A) The UV-vis absorption spectra of the experiment at different concentrations of CTC (0.4, 0.8, 1, 2, 3, 4 μ mol·L⁻¹) and the corresponding photographs. The upper illustration shows the photos of the corresponding concentrations. (B) Fitting curve of A₆₀₀/A₄₁₀ and lg(C_{CTC}). Error bars represent the standard deviation of three independent measurements. Substance concentration: 120 μ mol·L⁻¹ p-aminophenol, 120 μ mol·L⁻¹ AgNO₃, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 500 μ mol·L⁻¹ Mg(NO₃)₂

Fig. S7 (A) The UV-vis absorption spectra of the experiment at different concentrations of OTC (0.3, 1, 2, 3, 4, 5 μ mol·L⁻¹) and the corresponding photographs. The upper illustration shows the photos of the corresponding concentrations. (B) Fitting curve of A₆₀₀/A₄₁₀ and lg(C_{OTC}). Error bars represent the standard deviation of three independent measurements. Substance concentration: 120 μ mol·L⁻¹ p-aminophenol, 120 μ mol·L⁻¹ AgNO₃, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 500 μ mol·L⁻¹ Mg(NO₃)₂

Fig. S8 Effect of salt concentration on TCs detection, NaCl+Apts+Mg(NO₃)₂+AuNPs +TET+paminophenol+AgNO₃. Substance concentration: 120 μ mol·L-1 AgNO₃, 120 μ mol·L-1 paminophenol, 0.0317 μ mol·L⁻¹ AuNPs, 0.08 μ mol·L⁻¹ Apts, 2 μ mol·L⁻¹ TET, 500 μ mol·L⁻¹ Mg(NO₃)₂

Probe	Procedure	Time/min	Linear range	LOD (nmol·L ⁻¹)	References
AuNPs@Apt	AuNPs aggregation using NaCl	10	50 nM~3.0 μM	32.9	1
AuNPs@Apt	AuNPs aggregation using CTAB	30	10 nM~2 μM	122	2
AuNPs@Apt	AuNPs aggregation using NaCl	20	100 nM~5 μM	71	3
Enzyme	-	6	100 nM~10 µM	60	4
D-Trp-OMe@AuNCs	-	20	1.5μM ~30 μM	200	5
DNAzyme	-	17	11 nM~1 μM	3.1	6
AuNPs@Apt	AuNPs aggregation and silver metallization	5	400 nM~6 µM	40.88	This work

thada in lution no Table C1 C f diffe + TET 1.+ -+: ...fc

AuNPs= Gold nanoparticles, Apt= Aptamer, AuNCs= Gold cluster, D-Trp-OMe= D-tryptophane methyl ester. CTAB= hexadecyltrimethylammonium bromide.

References

- 1. Y.-Y. Wu, P. Huang, F.-Y. Wu, Food Chem. , 2020, 304, 125377
- 2. L. He, Y. Luo, W. Zhi, Y. Wu, P. Zhou, Aust. J. Chem. , 2013, 66, 485-490
- 3. M. Qi, C. Tu, Y. Dai, W. Wang, A. Wang, J. Chen, *Anal. Methods*, 2018, **10**, 3402-3407
- 4. M. Besharati, M.-A. Tabrizi, F. Molaabasi, R. Saber, M. Shamsipur, J. Hamedi, S. Hosseinkhan., *Biotechnol. Appl. Biochem.*, 2020, DOI: 10.1002/bab.2078
- 5. Y. Song, J. Qiao, W. Liu, L. Qi, *Microchem. J.*, 2020. 157, 104871
- 6. Y. Tang, X. Huang, X. Wang, C. Wang, H. Tao, Y. Wu, *Food Chem.*, 2022, **366**, 130560