Supplementary information

Facile fabrication of highly sensitive and non-label aptasensors based on antifouling amyloid-like protein aggregates

Xiangyi Ye^{*a*, *c*}, Dun Zhang^{*a*, *b*, *c*, *}, Yan Zeng^{*a*, *c*}, Yingwen Wang^{*a*, *b*, *c*}, and Peng Qi^{*a*, *b*, *c**}

 $^{\it a}$ Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of

Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

^b University of the Chinese Academy of Sciences, Beijing 100039, China

^c Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China

* Corresponding authors, Dun Zhang (zhangdun@qdio.ac.cn) and Peng Qi (qipeng@qdio.ac.cn)

Fig. S1 XPS wide scan (A) and the corresponding high resolution C1s spectra (B) of the PTB-Au film. XPS Au 4f spectra of BSA-Au nanoclusters (C) and PTB-Au film (D), the binding energy of the C1s orbital was used as an internal reference.

Fig. S2 Cyclic voltammograms (A) and the change of anodic current (B) of Apt/PTB-Au/GR/ITO electrodes fabricated with ATP aptamer of varied concentrations.

Fig. S3 Cyclic voltammograms of ITO, GR/ITO, PTB-Au/GR/ITO, Apt/PTB-Au/GR/ITO, MCH/Apt/PTB-Au/GR/ITO, and ATP/MCH/Apt/PTB-Au/GR/ITO electrodes.

Fig. S4 Calibration curves of aptasensors based on PTB-Au antifouling film for cyt c detection (A), and the current changes of the aptasensor towards cyt c and other interferences, the concentration of all substances was 150 nM (B).

Detection.						
Methods	Materials for signal Linear range		LOD	Dof		
	amplification	(nM)	(nM)	nel.		
Colorimetric	ZIF-90/ MoS ₂ nanozyme	100- 100 000	47	[1]		
Fluorometric	Gold nanobipyramids	200- 10 000	61.29	[2]		
Photoelectrochemical	CuO nanoflowers	5- 3 000	2.1	[3]		
Electrochemical	Carbon-fiber	1000- 10 000	124	[4]		
Electrochemical	Electrochromic WO ₃	2- 100	0.51	[5]		
Electrochemical	PTB-Au antifouling film	1- 150	0.26	This work		

Table S1 Comparison between the presented and other reported methods for ATP

Table S2 Comparison between the presented and other reported methods for cyt c
Detection.

	Materials for signal	Linear range	LOD	Def
Methods	amplification	(nM)	(nM)	ket.
Colorimetric	β -Co(OH) ₂ nanoplates	50- 1000 000	1	[6]
Fluorometric	QDs@SiO ₂ @EMSiO ₂	0.4- 200	0.15	[7]
Fluorometric	Ag ₂ S quantum dots	2- 150	1.7	[8]
Photoelectrochemica I	CdS/Au/TiO2 nanoarray	0.005- 100	0.003	[9]
Electrochemical	Polypyrrole	0.01- 1	0.005	[10]
Electrochemical	PTB-Au antifouling film	1- 150	0.64	This work

Targets	Culture supernatant	Added (nM)	Found (nM)	Recovery (%)	RSD (%)
ATP	D. caledoiensis	5.00	5.09	101.80	2.65
	D. caledoiensis	50.00	48.53	97.06	1.17
	D. caledoiensis	100.00	99.22	99.22	0.39
	E. coli	5.00	5.12	102.40	1.90
	E. coli	50.00	48.37	96.74	1.04
	E. coli	100.00	99.81	99.81	0.52
Cyt c	D. caledoiensis	5.00	5.28	105.60	2.51
	D. caledoiensis	50.00	48.46	96.92	0.45
	D. caledoiensis	100.00	102.44	102.44	0.44
	E. coli	5.00	5.18	103.60	1.98
	E. coli	50.00	48.70	97.40	1.68
	E. coli	100.00	106.43	106.43	0.73

Table S3 Recovery tests for ATP and cyt c detection in bacterial samples (n = 6).

References

- 1. Y. Wang, D. Zhang, Y. Zeng and P. Qi, Acs Applied Nano Materials, 2021, 4, 11545-11553.
- M. Zheng, Y. Kang, D. Liu, C. Li, B. Zheng and H. Tang, Sensors and Actuators B-Chemical, 2020, 319, 128263.
- J. Sun, L. Li, Q. Kong, Y. Zhang, P. Zhao, S. Ge, K. Cui and J. Yu, *Biosens. Bioelectron.*, 2019, 133, 32-38.
- 4. Y. Li, M. E. Weese, M. T. Cryan and A. E. Ross, *Analytical Methods*, 2021, **13**, 2320-2330.
- P. Qi, Y. Wang, D. Zhang, Y. Zeng, Y. Sun and X. Ye, Sensors and Actuators B-Chemical, 2021, 339, 129908.
- F. Mesgari, S. M. Beigi, N. Fakhri, M. Hosseini, M. Aghazadeh and M. R. Ganjali, *Microchem. J.*, 2020, **157**, 104991.
- 7. N. S. Amiri and M.-R. Milani-Hosseini, *Analytical Methods*, 2019, **11**, 5919-5928.
- 8. M. Cai, C. Ding, X. Cao, F. Wang, C. Zhang and Y. Xian, Anal. Chim. Acta, 2019, **1056**, 153-160.

- 9. D. Zhen, F. Zhong, D. Yang, Q. Cai and Y. Liu, *Materials Express*, 2019, **9**, 319-327.
- 10. A. Shafaat, F. Faridbod and M. R. Ganjali, New J. Chem., 2018, 42, 6034-6039.