Ultrasensitive electrochemical sensor based on in-situ synthesized manganese dioxide / gold nanoparticles nanocomposites for rapid detection of methylmercury in foodstuffs

Yi Zhang, Yanqing Wu, Lishen Su, Chunlin Zhu, Xiaoping Wu*

Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China

* Corresponding author: Xiaoping Wu

Postal address: College of Chemistry, Fuzhou University, Fuzhou 350116, China

Tel.: +86-591-22866131;

Fax: +86-591-22866131;

E-mail: wapple@fzu.edu.cn (X. Wu)

Fig. S1 The CV curve for electrodeposition of MnO_2 on GCE in 0.1 mol/L H_2SO_4 aqueous solution containing 5 mmol/L $MnSO_4$. Scan rate: 50 mV/s.

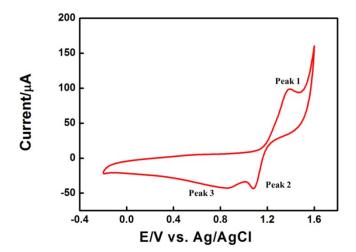
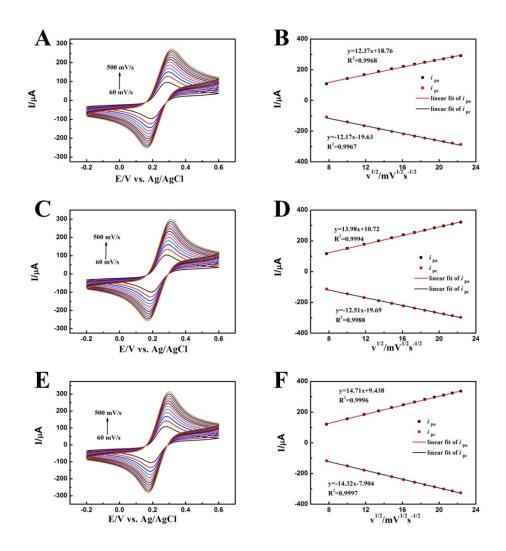



Fig. S2 Cyclic voltammograms in a 0.1 mol/L KCl solution containing 5 mmol/L $Fe(CN)_6^{3-/4-}$ at different scan rates, and corresponding linear relationship between redox peak currents and the scan rates using MnO₂/GCE(A,B), AuNPs/GCE(C,D), and MnO₂/AuNPs/GCE(E,F)

Fig. S3 (A) CV curves of $MnO_2/AuNPs/GCE$ towards 10 µg/L CH_3Hg^+ at different scan rates in 0.1 mol/L acetate buffer solution (pH 5.0). (B) Corresponding linear relationship between redox peak currents and scan rates.

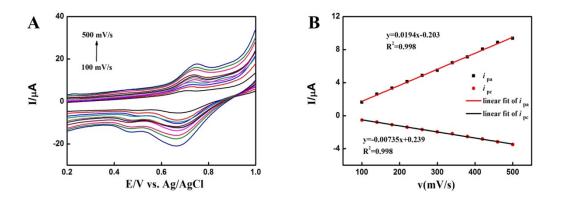
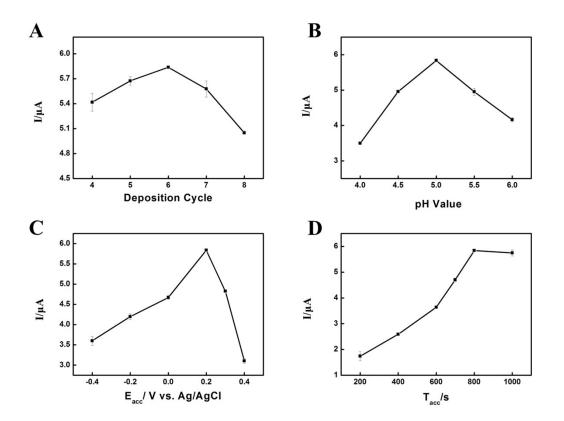



Fig. S4 The influences of (A) deposition cycles for MnO_2 , (B) pH, (C) accumulation potential and (D) accumulation time on the peak current of 10 μ g/L CH₃Hg⁺.

