1	Supporting information
2	
3	A nucleic acid dye-enhanced electrochemical biosensor for
4	the label-free detection of Hg ²⁺ based on gold nanoparticle
5	modified disposable screen-printed electrode
6	
7	Wei Liu,ª Yunqi Wang,ª Fangfang Sheng,ª Bing Wan,ª Gangxu Tang, ^b Shuxia Xu ^{a c} *
8	
9	a College of Environment and Ecology, Chengdu University of Technology, Chengdu
10	610059, P. R. China
11	b College of Material and Chemistry & Chemical Engineering, Chengdu University of
12	Technology, Chengdu 610059, P. R. China
13	c State Environmental Protection Key Laboratory of Synergetic Control and Joint
14	Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu
15	610059, P. R. China
16	

- 19 Fig S1 (A) The elemental mapping images of the AuNPs modified SPCE surface. (B) EDS
- 20 pattern of the AuNPs modified SPCE surface.

Table S1 Variation of CV and EIS values of electrode surface under different modificationsteps.

Stens	CV	EIS
Steps	(µA)	(Ω)
AuNPs/ SPCE	63.24	339.6
DNA-c/ AuNPs/ SPCE	42.74	895.9
MCH/ DNA-c/ AuNPs/ SPCE	33.53	2472
Hg ²⁺ / MCH/ DNA-c/ AuNPs/ SPCE	35.60	2015
GelRed/ Hg ^{2+/} MCH/ DNA-c/ AuNPs/ SPCE	57.25	610.2

Fig S2 DPV signal responses of the electrochemical sensor with different dyes, EB
(ethidium bromide), 2μM; MB (methylene blue), 2 μM; SG (SYBR Green I), 2×; GelRed,
2×. Error bars represented the standard deviation of three parallel experiments.

34 Fig S3 Fluorescence spectra of GelRed, GelRed+DNA-c and GelRed + DNA-c + Hg^{2+} .

35 (Concentration of Hg^{2+} = 500 nM, DNA-c=100 nM, GelRed=2×, excitation wavelength was

36 530 nm)

41 Fig S4 (A) CVs of electrochemical sensors at different scan rates; (B) the linear relationship
42 between peak current and the square root of scanning speed; (C) the linear relationship
43 between the anodic and cathodic peak potentials versus logarithm of scan rate.

- 47 Fig S5 The SEM images of the electrode surfaces with different electrodeposition times,
- 48 (A) unmodified SPCE;(B)50 s; (C) 150 s; (D) 300 s.

53 Fig S6 The (A) CVs and (B) electrochemical response of electrodes in $[Fe(CN)_6]^{3-/4-}$

54 (evaluated through the DPVs) with different electrodeposition times. Error bars represented

- 55 the standard deviation of three parallel experiments.
- 56

59 Fig S7 (A) CVs and (B) redox peak current of the AuNPs modified SPCE after succeive

Method	Liner range	Limit of	Ref.
	8	detection	
fluorescence	5–250 nM	1.95 nM	1
fluorescence	0.1-50 μΜ	19.0 nM	2
fluorescence	50- 1200 nM	20.0 nM	3
colorimetry	2-100 nM	14.23 nM	4
colorimetriy	2-28 nM	0.032 nM	5
SERS	0.1-1000 nM	0.1 nM	6
SERS	0.1-10000 nM	0.1 nM	7
Electrochemistry	0.1- 10 nM	0.028 nM	8
Electrochemistry	0.1-130 nM	0.03 nM	9
Electrochemitry	0.05-100 nM	0.024 nM	10
Electrochemitry	0.1-500 nM	0.04 nM	This work

Table S2 Comparison of different Hg²⁺detection methods

References

- 66 1 J. Wang, F. Song, Y. Ai, S. Hu, Z. Huang and W. Zhong, J. Lumin., 2019, 34, 205-211.
- 67 2 S. Liao, X. Li, H. Yang and X. Chen, *Talanta*, 2019, **194**, 554-562.
- 68 3 P. E. Hande, A. B. Samui and P. S. Kulkarni, Actuators B Chem., 2017, 246, 597-605.
- 69 4 P. Borthakur, G. Darabdhara, M. R. Das, R. Boukherroub and S. Szunerits, Sens. Actuators B
- 70 *Chem.*,2017, **244**, 684-692.
- 71 5 J. Hai, F. Chen, J. Su, F. Xu and B. Wang, Anal. Chem., 2018, 90, 4909-4915.
- 72 6 L. Qi, M. Xiao, F. Wang, L. Wang, W. Ji, T. Man, A. Aldalbahi, M. Naziruddin Khan, G.
- 73 Periyasami, M. Rahaman, A. Alrohaili, X. Qu, H. Pei, C. Wang and L Li, *Nanoscale*, 2017, 9,
- 74 14184-14191.
- 75 7 Q. Zou, X. Li, T. Xue, J. Zheng and Q. Su, *Talanta*, 2019, **195**, 497-505.
- 76 8 A. L. Suherman, K. Ngamchuea, E. E. L. Tanner, S. V. Sokolov, J. Holter, N. P. Young and R. G.
- 77 Compton RG, Anal. Chem., 2017, **89**, 7166-7173.
- 78 9 H. Wang, Y. Zhang, H. Ma, X. Ren, Y. Wang, Y. Zhang and Q. Wei, Biosens. Bioelectron., 2016,
- 79 **86**, 907-912.
- 80 10 C. Mei, D. Lin, C. Fan, A. Liu, S. Wang and J. Wang, Biosens. Bioelectron., 2016, 80, 105-110.
- 81