Supporting Information

A NIR fluorescent probe for the specific detection of hypochlorite and its application in vitro and vivo

Lu Zhen, a†Jinshuai Lan, a,b†Shengan Zhang,c Li Liu, a Ruifeng Zeng, a Yi Chen,*b Yue Ding,*a,b

- ^a School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, Republic of China
- ^b Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, Republic of China
- ^c School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, Republic of China

*Corresponding authors: chenyi@shutcm.edu.cn, Tel: 021-51322318; dingyue-2001@hotmail.com, Tel: 021-51322318.

† These authors contributed equally to this work.

Fig. S1. ¹H NMR spectrum of probe DAB in DMSO-d₆.

Fig. S2.¹³C NMR spectrum of probe DAB in DMSO- d_6 .

Fig. S3. Mass spectrum of probe DAB (A) and the crude product from the reaction of the probe with ClO⁻(B).

Fig. S4. Toxicity of various concentrations of probe DAB $(0, 5, 10, 20, 30 \mu M)$ to A549 cells, the cell viability was detected by CCK-8.

Table S1. Comparison of fluorescence probes for ClO⁻.

Probe	λ _{em} (nm)	Reaction	LOD	biological	Ref.
		time		system	
NC—CN S S	590	Within 20 s	4.64 μΜ	Cell and zebrafish imaging	S1
HO HO N	413	A few seconds	1.74 μΜ	Zebrafish imaging and water sample	S2
O N O O NO2	523	Within 3 s	2.66 μΜ	Cell imaging and water sample	S3
	490	Within 2 min	1.4 μΜ	Tap water	S4
NC_CN B-OV	660	Within 1 min	1.46 μΜ	Cell, zebrafish imaging and water sample	This work

References

- [1] X.U. Kong, S.M. Shuang, Y.T, Zhang, Y. Wang, C. Dong, Dicyanoisophorone-based fluorescent probe with large Stokes shift for ratiometric detection and imaging of exogenous/endogenous hypochlorite in cell and zebrafish, Talanta, 2022, 242: 123293.
- [2] S. Boeon, K. Hyeongjin, J. Soogyeong, K. Ki-Tae, Ki. Cheal, A benzothiazole-based fluorescent and colorimetric probe for the detection of ClO⁻ and its application to zebrafish and water sample, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 270: 120827.

- [3] J.W. Li, C.X. Yin, T. Liu, Y. Wen, F. J. Huo, A new mechanism-based fluorescent probe for the detection of ClO⁻ by UV–vis and fluorescent spectra and its applications, Sensors & Actuators: B. Chemical, 2017, 252: 1112-1117.
- [4] X.H. Cheng, S.H. Qu, Z.C. Zhong, W.N. Li, Coumarin-Based Fluorescent Probe for Hypochlorites and Real Application in Tap Water, Journal of fluorescence, 2017, 27(4):1427–1433.