Colorimetric sensor array based on CoOOH nanoflakes for rapid discrimination of antioxidants in food

Yuling Li^a, Xiaotong Wu^a, Zixuan Wu^a, Mingmin Zhong^a, Xiaoping Su^a, Youai Ye^a, Yan Liu^b, Lei Tan^{c,*}, Yong Liang^{a,*}

a School of Chemistry, South China Normal University, Guangzhou, 510006, China

b Guangdong Centre for Agricultural Products Quality and Safety, Guangzhou, 510230, China

c Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China

*Corresponding authors. jsutanlei@gmail.com, liangy@scnu.edu.cn

Mobile phase A (%)	Mobile phase B (%)
50	50
50	50
20	80
20	80
10	90
50	50
50	50
	Mobile phase A (%) 50 50 20 20 10 50 50

Table S1. Gradient elution conditions for the separation of the antioxidants

 Table S2. Euclidean distance between different samples

Centroid functions	Factor 1 Factor 2 Factor		Factor 3	Euclidean distances (EDs)
BHT-100 nM	-20.152	4.765	-0.276	0.4.50
BHA/TBHQ=9:1	-18.789	-2.92	2.102	8.159
TBHQ-100 nM	8.871	3.952	-2.051	28.80
TBHQ-50 nM	-7.358	-7.398	-2.759	
Bis-100	-12.446	-8.235	0.324	6.008
TBHQ-500 nM	24.462	-11.271	3.495	
Bis-20	24.462	-5.479	-0.929	7.289
BHA-50 nM	-26.703	-0.837	-1.498	
Sau-100	-28.226	-1.125	-0.132	2.066
BHA-700 nM	2.984	13.411	5.297	
Sau-20	1.02	7.771	-6.125	12.89

4-Hexylresorcinol tert-Butylhydroquinone Nordihydroguaiaretic acid L-ascorbyl palmitate

Figure S1. Chemical structures of the eight phenolicantioxidants.

Figure S2. The high-resolution transmission electron microscope image of the CoOOH nanoflakes.

Figure S3. Typical absorption spectra for monitoring the catalytic oxidation of TMB in the presence of CoOOH nanozymes with various concentrations of 4-HR, BHA, BHT, DG, L-AA, NDGA, PG and TBHQ.

Figure S4. Typical absorption spectra for monitoring the catalytic oxidation of OPD (a), ABTs (b), and TMB (c) in the presence of CoOOH nanozymes with various concentrations of BHA. Chromogenic activity of OPD (d), ABTsc(e), and TMB (f) after incubation with different concentrations of the eight antioxidants.

Figure S5. Typical absorption spectra for monitoring the catalytic oxidation of ABTs in the presence of CoOOH nanozymes with various concentrations of 4-HR, BHA, BHT, DG, L-AA, NDGA, PG and TBHQ.

Figure S6. Typical absorption spectra for monitoring the catalytic oxidation of OPD in the presence of CoOOH nanozymes with various concentrations of 4-HR, BHA, BHT, DG, L-AA, NDGA, PG and TBHQ.

Figure S7. Heat plot of the absorption signatures of 50 nM antioxidants. Five replicates are shown per antioxidant(a) and The classification accuracy for identifying antioxidants (each at 50 nM) using an individual Chromogenic substrate (ABTs, OPD, or TMB) and the combination of three substrates.

Figure S8. Determination of the antioxidants in biscuits, sausages and fried meat kebabs by high-performance liquid chromatography.

Sample	Concentration (nM)	Number of samples	Correctly identified	Accuracy (%)
	50	5	5	100
	100	5	5	100
TBHQ	300	5	5	100
	500	5	5	100
	700	5	5	100
	900	5	5	100
	1000	5	5	100
	50	5	5	100
	100	5	5	100
	300	5	5	100
BHT	500	5	5	100
	700	5	5	100
	900	5	5	100
	1000	5	5	100
Biscuits	100	5	4	80
(dilution)	20	5	5	100
Sausage	100	5	4	80
(dilution)	20	5	5	100
	50	5	4	80
	100	5	5	100
	300	5	5	100
PG	500	5	5	100
	700	5	5	100
	900	5	5	100
	1000	5	5	100

Table	S3 .	Result	of	unknown	sampl	es d	etection	using a	1 LD	A	algorithm.
	~ • •	1000010	~ -	willing	Dealipi	••••		woning v			wigor i tillin

	50	5	5	100
BHA	100	5	5	100
	300	5	5	100
	500	5	5	100
	700	5	5	100
	900	5	5	100
fried pork kebabs (dilution)	1000	5	5	100
	200	5	5	100
	100	5	5	100
	20	5	5	100
	Total	175	172	98.3

Reference

[1] Compilation of National Food Safety Standards, 2014.