Title: Development of Novel Enzyme Immobilization Methods Employing Formaldehyde or Triethoxysilylbutyraldehyde To Fabricate Immobilized Enzyme Microreactors For Peptide Mapping

Authors: Kenneth Ku, Connor Frey, Maor Arad, & Golfam Ghafourifar

Supplementary Data

Table S1 – Effects of using phosphate buffer vs phosphate buffered saline (PBS) on formation of FA-CT enzyme particle. Reactions were carried out for two hours at 21°C using 40 μ L of 1.3 mM chymotrypsin and 78 μ L of formaldehyde 37%. "Large" indicates an enzyme particle which is greater in size than 2 mm × 2 mm in terms of the width and height for the total size of the enzyme particle. "Small" refers to any enzyme particle which is less than 2mm × 2mm mm in terms of the width and height for the total size of the enzyme particle. "Robust" indicates the FA-CT enzyme particle formed without breaking apart during the washing procedure. "Poor" robustness refers to breakage of the enzyme particle during washing.

	Buffer Conditions	Enzyme Particle	Enzyme Particle
	_	Size	Robustness
Phosphate Buffer	50 mM, pH 6.4	Large	Robust
Phosphate Buffer Saline (PBS)	10 mM, pH 7.4	Small	Robust

Table S2 – Effects of various FA:CT ratios (mass:mass) on immobilization of 1.3 mg CT. Crosslinking reaction was performed for two hours at 21°C using 50 mM phosphate buffer (pH 6.4)."Large/Small" and "Robust/Poor" were defined same as Table 1.

FA:CT ratio (mass:mass)	Enzyme Particle Size	Enzyme Particle Robustness
38.5:1.0	Small	Robust
46.1:1.0	Small	Robust
69.2:1.0	Large	Robust
123.1:1.0	Large	Poor

Table S3 – Effects of reaction time on FA-CT immobilization. The reaction was carried out at 30 °Cusing a FA:CT ratio of 69.2:1.0 (mass:mass). CT was dissolved in 50 mM phosphate buffer (pH 6.4).Immobilized amount of CT was calculated to be 1.3 mg. "Large" and "Robust" were defined same asTable 1.

Immobilization Time (Hours)	Enzyme Particle Size	Enzyme Particle Robustness
Two	Large	Robust
Four	Large	Robust
Seven	Large	Poor

Table S4 – Effects of temperature on FA-CT immobilization performed for two hours using a ratio of FA:CT of 69.2:1.0 (mass:mass) with 1.3 mg CT in 50 mM phosphate buffer (pH 6.4). "Large" and "Robust" were defined same as Table 1.

Immobilization Temperature ((°C) Enzy	me Particle Size	Enzyme Particle Robustness		
0		Small	Poor		
21		Small	I	Poor	
30		Large	R	Robust	
37		Large	R	obust	
K W V T F I S L L L L F S S A Y S R G V E H V K L V N E L T E F A K T C V A D E R N E C F L S H K D D S P D L P K L K P N K Y N G V F Q E C C Q A E D K G A C L L S Q K F P K A E F V E V T K L V T D L C D K P L L E K S H C I A E V E K D A I P E Y A V S V L L R L A K E Y E A T L E G E Y G F Q N A L I V R Y T R K V C C T T E K Q I K K Q T A L V E L L K H K P K	F R R D T H K S E I S H A G C E K S L H D P N T L C D E F K L P K I E T M R E K T K V H K E C C H G P E N L P P L T A D E C C A K D D P H A S T P T L V E V S R E S L V N R R P C F A T E E Q L K T V M	A H R F <mark>K D L G E E</mark> T L F G D E L C K V A D E K K F W G K Y V L A S S A R Q R L D L L <mark>E C A D D R A</mark> F A E D K D V C K N <mark>C Y</mark> S T V F D K L K S L G K V G T R C C S A L T P D E T Y V E N F V A F <mark>V D K C</mark>	H F K G L V L I A F A S L R E T Y G D M L Y E I A R R H P Y R C A S I Q K F G E D L A K Y I C D N Q Y Q E A K D A F L G H L V D E P Q N L I T K P E S E R M P C P K A F D E K L F T C A A D D K E A C F	S Q Y L Q Q C P F D A D C C E K Q E P E F Y A P E L L Y Y A R A L K A W S V A R D T I S K L K E C S F L Y E Y S R R H K Q N C D Q F E K L T E D Y L S L I L N F H A D I C T L P D A V E G P K L V V S	

Figure S1. Primary sequence of BSA highlighted indicating the MS identified peptides. BSA was denatured and digested in-solution by free chymotrypsin (33.1 mg/mL) using an E:S ratio of 10:1 and incubated at 37 °C for 4 hours. MS data shows 11 unique peptides with a coverage of 18 % (107/606 amino acids).

MKWVTFISLL	LLFSSAYSRG	VFRRDTHKSE	I A H R F <mark>K D L G E</mark>	EHFKGLVLIA
FSQYLQQCPF	DEHVKLVNEL	ΤΕΓΑΚΤΟΥΑΟ	ESHAGCEKSL	HTLF <mark>GDELCK</mark>
VASLRETYGD	MADCCEKQEP	ERNECFLSHK	DDSPDLPKLK	PDPNTLCDEF
KADEKKFWGK	YLYEIARRHP	YFYAPELLYY	ANKYNGVFQE	CCQAEDKGAC
LLPKIETMRE	KVLASSARQR	L R C A S I Q K F <mark>G</mark>	ERALKAW SVA	R L <mark>S Q K F P K A E</mark>
FVEVTKLVTD	L T K V H K E C C H	GDLLECADDR	A D L A K Y <mark>I C D N</mark>	QDTISSKL KE
CCDKPLLEKS	HCIAEVEKDA	IPENLPPLTA	D F <mark>A E D K D V C K</mark>	NYQEAKDAFL
G S F L Y E Y <mark>S R R</mark>	HPEYAVSVLL	RLAKEYEATL	EECCAKDDPH	A C Y S T V F <mark>D K L</mark>
KHLVDEPQNL	IKQNCDQFEK	L G E Y G F Q <mark>N</mark> A L	IVRYTRKVPQ	VSTPTLVEVS
R S L G K V G T R C	CTKPESERMP	CTEDYLSLIL	NRLCVLHEKT	PVSEKVTKCC
TESLVNRRPC	F S A L T P D E T Y	VPKAFDEKLF	TFHADICTLP	ΟΤΕΚQΙΚΚQΤ
ALVELLKHKP	KATEEQLKTV	MENFVAF <mark>VDK</mark>	CCAADDKEAC	FAVEGPKLVV
STOTALA				

Figure S2. Primary sequence of BSA with highlights indicating the MS identified peptides. FA-CT enzyme particle digestion of denatured BSA at 10:1 enzyme-to-substrate ratio (1.30mg CT:0.13mg BSA) using chymotrypsin dissolved in phosphate buffer (50mM, pH 6.4) indicates 42% coverage (256/607 amino acids), generating 54 chymotryptic peptides.

MKWVTFISLL	LLFSSAYSRG	VFRRDTHKSE	I A H R F <mark>K D L G E</mark>	EHFKGL VLIA
F <mark>S Q Y L Q Q C P F</mark>	DEHVKLVNEL	ΤΕΓΑΚΤΟΥΑΟ	ESHAGCEKSL	HTLFGDELCK
VASLRETYGD	MADCCEKQEP	ERNECFLSHK	DDSPDLPKLK	PDPNTLCDEF
KADEKKFWGK	YLYEIARRHP	YFYAPELLYY	ANKYNGVFQE	CCQAEDKGAC
LLPKIETMRE	KVLASSARQR	L R C A S I Q K F <mark>G</mark>	ERALKAW SVA	R L <mark>S Q K F P K A E</mark>
FVEVTKLVTD	L T K V H K E C C H	GDLLECADDR	A D L A K Y <mark>I C D N</mark>	QDTISSKL KE
CCDKPLLEKS	HCIAEVEKDA	IPENLPPLTA	DFAEDKDVCK	NYQEAKDAFL
G S F L Y E Y <mark>S R R</mark>	HPEYAVSVLL	RLAKEYEATL	EECCAKDDPH	A C Y S T V F <mark>D K L</mark>
KHLVDEPQNL	IKQNCDQFEK	LGEYGFQNAL	IVRYTRKVPQ	VSTPTLVEVS
R S L G K V G T R C	CTKPESERMP	CTEDYLSLIL	NRLCVLHEKT	PVSEKVTKCC
TESLVNRRPC	F <mark>S A L T P D E T Y</mark>	VPKAFDEKLF	T F <mark>H A D I C T L P</mark>	ΔΤΕΚQΙΚΚQΤ
ALVELL KHKP	KATEEQLKTV	MENFVAF <mark>VDK</mark>	C C A A D D K E A C	FAVEGPKLVV
STQTALA				

Figure S3. Primary sequence of BSA with highlights indicating the MS identified peptides. FA-CT enzyme particle digestion of denatured BSA at 10:1 enzyme-to-substrate ratio (1.30mg CT:0.13mg BSA) using chymotrypsin dissolved in PBS (10mM, pH 7.4) indicates 35% coverage (214/607 amino acids), generating 54 chymotryptic peptides

Figure S4 – Electropherograms from the chymotrypsin 0.13 mM standard (red) and the supernatants from the FA-CT (green) and TESB-CT (blue) enzyme particles. This shows the supernatant for the TESB-CT below the limit of detection for the G7100A Capillary Electrophoresis.

Figure S5. Electropherogram of FA-CT enzyme particle digestion of denatured BSA at 1:1 enzyme-tosubstrate ratio (1.30mg CT:1.30mg BSA). Separations were performed at +15 kV using 50 mM phosphate buffer, pH 2.5 with detection at 200 nm.

Figure S6 – Electropherogram of FA-CT enzyme particle digestion of denatured BSA at 10:1 enzyme-tosubstrate ratio (1.30mg CT:0.13mg BSA). Separation condition was the same as Fig. S1.

Figure S7 – Electropherogram of FA-CT enzyme particle digestion of denatured BSA at 100:1 enzymeto-substrate ratio (1.30mg CT:0.013mg BSA). Separation condition was the same as Fig. S1.

KWVTFISLLL	LFSSAYSRGV	FRRDTHKSEI	A H R F <mark>K D L G E E</mark>	HFKGL VLIAF	SQYLQQCPFD
EHVKLVNELT	EFAKTCVADE	SHAGCEKSL H	T L F <mark>G D E L C K V</mark>	A S L R E T Y G D M	A D C C E K Q E P E
RNECFLSHKD	DSPDLPKLKP	DPNTLCDEFK	ADEKKFWGKY	LYEIARRHPY	FYAPELLYYA
N K Y <mark>N G V F Q E C</mark>	CQAEDKGACL	LPKIETMREK	VLASSARQRL	RCASIQKFGE	RALKAWSVAR
L SQKFPKAEF	VEVTKLVTDL	TKVHKECCHG	DLLECADDRA	DLAKYICDNQ	DTISSKL KEC
CDKPLLEKSH	CIAEVEKDAI	PENLPPLTAD	F <mark>A E D K D V C K N</mark>	YQEAKDAFLG	SFLYEY SRRH
PEYAVSVLL R	LAKEYEATLE	ECCAKDDPHA	CYSTVF <mark>DKLK</mark>	HLVDEPQNLI	KQNCDQFEKL
GEYGFQNALI	VRYTRKVPQV	STPTLVEVSR	<mark>S L</mark> G K V G T R C C	TKPESERMPC	TEDYLSLILN
R L <mark>C V L H E K T P</mark>	VSEKVTKCCT	ESL VNRRPCF	SALTPDETYV	PKAFDEKLFT	FHADICTLPD
ΤΕΚΟΙΚΚΟΤΑ	LVELLKHKPK	ATEEQLKTVM	ENFVAFVDKC	CAADDKEACF	A V E G P K L V V S
TQTALA					

Figure S8 – Primary sequence of BSA with highlights indicating the MS identified peptides. FA-CT enzyme particle digestion of denatured BSA at 1:1 enzyme-to-substrate ratio (1.30mg CT:1.30mg BSA) indicates 68% coverage (415/606 amino acids), generating 54 unique peptides.

Figure S9. Primary sequence of BSA with highlighted indicating the MS identified peptides. FA-CT enzyme particle digestion of denatured BSA at 10:1 enzyme-to-substrate ratio (1.3mg CT:0.13mg BSA) shows a 67% coverage (407/606 amino acids), generating 44 unique peptides.

MKWVTFISLL	LLFSSAYSRG	VFRRDTHKSE	I A H R F <mark>K D L G E</mark>	EHFKGLVLIA	F
DEHVKLVNEL	TEFAKTCVAD	ESHAGCEKSL	HTLF <mark>GDELCK</mark>	VASLRETYGD	MADCCEKQEP
ERNECFLSHK	DDSPDLPKLK	P D P N T L C D E F	KADEKKFWGK	YLYEIARRHP	YFYAPELLYY
A N K Y <mark>N G V F Q E</mark>	CCQAEDKGAC	LLPKIETMRE	KVLASSARQR	LRCASIQKFG	ERALKAWSVA
R L <mark>S Q K F P K A E</mark>	FVEVTKLVTD	LTKVHKECCH	G D L L <mark>E C A D D R</mark>	ADLAKYICDN	QDTISSKLKE
CCDKPLLEKS	HCIAEVEKDA	IPENLPPLTA	DFAEDKDVCK	NYQEAKDAFL	G S F L Y E Y S R R
HPEYAVSVLL	R L A K E Y <mark>E A T L</mark>	EECCAKDDPH	ACYSTVF <mark>DKL</mark>	KHLVDEPQNL	IKQNCDQFEK
LGEYGFQNAL	IVRYTRKVPQ	VSTPTLVEVS	R S L G K V G T R C	CTKPESERMP	CTEDYLSLIL
NRLCVLHEKT	<u>PVSEKVTKCC</u>	TESLVNRRPC	F S A L T P D E T Y	VPKAFDEKLF	TFHADICTLP
DTEKQIKKQT	ALVELL <mark>KHKP</mark>	<mark>ΚΑΤΕΕQ</mark> ΙΚΤΥ	MENF <mark>VAFVDK</mark>	CCAADDKEAC	FAVEGPKLVV
CTOTALA					

Figure S10 – Primary sequence of BSA with highlights indicating the MS identified peptides. FA-CT enzyme particle digestion of denatured BSA at 100:1 enzyme-to-substrate ratio (1.30mg CT:0.013mg BSA) shows a 66% coverage (400/607 amino acids), generating 29 unique peptides.

MKWVTFISLL	LLF <u>SSAYSRG</u>	VFRRDTHKSE	I A H R F <mark>K D L G E</mark>	EHFKGLVLIA	F S Q Y L <mark>Q Q C P F</mark>
DEHVKLVNEL	T E F <mark>A K T C V A D</mark>	ESHAGCEKSL	H T L F <mark>G D E L C K</mark>	VASLRETYGD	MADCCEKQEP
ERNECFLSHK	DDSPDLPKLK	<u> P</u> D P N T L C D E F	KADEKKFWGK	Y <u>LYEIARRH</u> P	YFYAPELLYY
A N K Y <mark>N G V F Q E</mark>	CCQAEDKGAC	L L P K I E T M R E	K V L A <u>S S A R Q R</u>	L R C A S I Q K F G	ERALKAWSVA
R L SQKFPKAE	FVEVTKLVTD	LTKVHKECCH	G D L L E C A D D R	ADLAKYICDN	QDTISSKLKE
CCDKPLLEKS	HCIAEV <u>EKDA</u>	IPENLPPLTA	D F <mark>A E D K D V C K</mark>	NYQEAKDAFL	G S F L Y E Y <mark>S R R</mark>
HPEYAVSVLL	RLAK <u>EYEATL</u>	EECCAKDDPH	ACY STVFDKL	KHLVDEPQNL	I KQ N C D Q F E K
LGE <u>YGFQNAL</u>	I V R Y <mark>T R K V P Q</mark>	VSTPTLVEVS	R S L G K V G T R C	<u>CTKPE</u> SERMP	CTEDYLSLIL
N R L C V L H E K T	PVSEKVTKCC	TESLVNRRPC	F S A L T P D E T Y	V P K A F D E K L F	TFHADICTLP
DTEKQIKKQT	ALVEL LKHKP	KATEEQLKTV	MENFVAFVDK	CCAADDKEAC	FAVEGPKLVV
STOTALA					

Figure S11 - Primary sequence of BSA with highlights indicating the MS identified peptides. TESB-CT enzyme particle digestion of denatured BSA at 1:1 enzyme-to-substrate ratio (1.30mg CT:1.30mg BSA) shows a 55% coverage (334/607 amino acids) generating 26 chymotryptic peptides.

CGVPAIQPVL	SGLSRIVNGE	EAVPGSWPWQ	V S L Q D K T G F H	FCGGSLINEN
WVVTAAHCGV	TTSDVVVAGE	FDQGSSSEKI	<mark>Q Κ L</mark> Κ Ι Α Κ V F Κ	N S K Y <mark>N S L T I N</mark>
NDITLLKLST	AASFSQTVSA	VCLPSASDDF	ААGТТСVТТG	WGLTRY <mark>TNAN</mark>
TPDRLQQASL	PLLSNTNCKK	YWGTKIKD <u>AM</u>	ICAGASGVSS	<u>CM</u> GDSGGPLV
CKKNGAWTLV	GIVSWGSSTC	S T S T P G V Y <mark>A R</mark>	VTALVNWVQQ	T L A A N

Figure S12 - Primary sequence of chymotrypsin with highlights indicating the MS identified peptides. TESB-CT autolysis shows a 67% coverage (164/245 amino acids) generating 14 chymotryptic peptides.