# Dual mode chemosensor for fluorescence detection of zinc and hypochlorite on fluorescein backbone and cell imaging application

Sibaprasad Maity \*a , Annada C Maity<sup>b</sup>, Avijit kumar Das\*c, Nandan Bhattacharyya<sup>d</sup>

<sup>a</sup>Department of Applied Sciences. Haldia Institute of Technology, Hatiberia, Haldia, -721657, West Bengal, India. E-mail: <u>spmaity2003@gmail.com</u>

<sup>b</sup>Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India

<sup>c</sup>Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029 India, Email: <u>avijitkumar.das@christuniversity.in</u>

<sup>d</sup> Panskura Banamali College, Purba Medinipur, West Bengal, India

#### 1. General procedure for drawing Job plot by Fluorescence method:

Stock solution of same concentration of **FAD** and Zn<sup>2+</sup> were prepared in the order of  $\approx 1.0 \times 10^{-5}$  M in acetonitrile/aqueous HEPES buffered solution (1:1, pH 7.2) solution. The emission in each case with different *host–guest* ratio but equal in volume was recorded. Job plots were drawn by plotting  $\Delta I.X_{host}$  vs  $X_{host}$  ( $\Delta I$  = change of intensity of the fluorescence spectrum at 426 nm during titration and  $X_{host}$  is the mole fraction of the host in each case, respectively).



**Figure S<sub>1</sub>:** Jobs plot diagram of **FAD** for  $Zn^{2+}$  (where  $X_h$  is the mole fraction of host and  $\Delta I$  indicates the change of the emission intensity).

#### 2. Binding constant



**Figure S<sub>2</sub>:** Changes of Fluorescence Intensity of **FAD** ( $c=1\times10^{-5}M$ ) as a function of [Zn<sup>2+</sup>] ( $c=2\times10^{-4}M$ ) at 426 nm.

### 3. Calculation of the detection limit:

## For Zn<sup>2+</sup>

The detection limit (DL) of **FAD** in emission spectra for  $Zn^{2+}$  was determined from the following equation:

DL = K\* Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph Figure we get slope = 51476, and Sb1 value is 30638.11

Thus using the formula we get the Detection Limit for  $Zn^{2+} = 1.79\mu M$  in Fluorescence spectra.



**Figure S<sub>3</sub>:** Changes of Fluorescence Intensity of **FAD** ( $c = 1 \times 10^{-5}M$ ) as a function of [Zn<sup>2+</sup>] ( $c = 2 \times 10^{-4}M$ ) at 426 nm.

### For hypochlorite,

The detection limit (DL) of **FAD** in fluorescence spectra for OCl<sup>-</sup> was determined from the following equation:

DL = K\* Sb1/S

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

Thus, using the formula, we get the Detection Limit for  $OCl^- = 2.24 \ \mu M$  in Fluorescence spectra.



**Figure S<sub>4</sub>:** Changes of Fluorescence Intensity of **FAD** ( $c = 1 \times 10^{-5}M$ ) as a function of [OCl<sup>-</sup>] ( $c = 2 \times 10^{-4}M$ ) at 520 nm.

4. <sup>1</sup>H NMR spectrum of Compound 1 in d<sub>6</sub>-DMSO (500 MHz):



5. <sup>1</sup>H NMR spectrum of Compound 2 in d<sub>6</sub>-DMSO (500 MHz):





# 6. <sup>1</sup>H NMR spectrum of FAD in d<sub>6</sub>-DMSO (500 MHz):

# 7. Mass spectrum of FAD



#### Instrument: Agilent 6310 Ion Trap

Analysed By