Supplementary Information

Batch-processed titanium-vanadium oxide nanocomposite based solid-state electrochemical sensor for zeptomolar nucleic acid detection

Tanvi Agarkar[#], Sayantan Tripathy[#], Vipin Chawla, Mrittika Sengupta, Souradyuti Ghosh*, Ashvani Kumar **

[#], Joint first authors

*, Co-corresponding author.

**, Corresponding author (will handle communication): ashuiit19@gmail.com.

SI Table 1 TVO single device cost calculations

Chemicals	Bulk Price (in Rupees)	Price of quantity per unit device (in Rupees)	
Vanadyl (acetylacetonate)	4372/100 gm	1.89/0.04 gm	
1-butanol	531/500 ml	3.8/3.6 ml	
benzyl alcohol	888/500 ml	0.71/0.4 ml	
Titanium tetraisopropoxide	4284/500 ml	0.28/0.033 ml	
Isopropyl alcohol	1475/2500 ml	1.74/2.96 ml	
Device Components	Bulk Price (in Rupees)	Price of quantity per unit device (in Rupees)	
Precursor solution	1.442/1000 <i>µ</i> 1	0.057/40 <i>µ</i> 1	
FTO	250/30 device	8.33/1 device	
Silver wire	365/2.7 gm	2.7/0.02 gm	
Silver paste	5000/10 gm	0.5/0.001 gm	
Total Cost:		~12/- per device	

Calculation of crystallite size, dislocation density, and lattice strain in the nanocomposite thin film using XRD data

The well-known Debye-Scherer's equation (1) was used to calculate the crystallite size (D)¹,

$$D = \frac{0.9\,\lambda}{\beta \cos\theta} \qquad \qquad ----- (1)$$

Where, λ = wavelength of the Cu k α radiations, β = full width at half maximum (FWHM) of the intense peak (in rad), and θ = corresponding angle value.

Using the obtained crystallite size the dislocation density of the nanocomposite films at various Ti mol% was calculated using Williamson and Smallman's formula (2). The dislocation density (δ) can be defined as the length of lines per unit area of crystal defects within a crystal².

$$\delta = \frac{1}{D^2} \qquad \qquad ----- (2)$$

The lattice strain (ε) was determined using the following equation (3)³ by using FWHM value and the corresponding peak angle value (θ),

The obtained crystallite size, dislocation density, and lattice strain values are presented in SI Table 2.

SI Table 2 Film thickness, crystallite size, dislocation density, and lattice strain values for 0 to 50 mol% TVO

Ti content (mol %)	Film thickness (nm)	Crystallite Size (nm)	Dislocation Density (lines. nm ⁻²)	Lattice strain
0	16.9	13.94	5.15×10^{-3}	14.13×10^{-3}
10	18.9	11.49	7.58×10^{-3}	17.08×10^{-3}
20	19	11.82	7.15×10^{-3}	16.58×10^{-3}
30	21.3	10.50	9.07 × 10 ⁻³	18.71×10^{-3}
40	20.3	10.49	9.08 × 10 ⁻³	18.72×10^{-3}
50	22.9	11.35	7.77 × 10 ⁻³	17.34×10^{-3}

Target Concentration	S(I) for DNA		S(I) for RNA	
	20%-TVO	SPE	20%-TVO	SPE
10	9.99 ± 2.5	6.98 ± 2.3	$14.20\pm\!\!4.8$	25.25 ± 0.5
10 ²	14.30 ± 4.9	14.39 ± 1.5	20.52 ± 1.4	28.97 ± 1.8
10 ³	25.21 ± 2.6	17.31 ± 2.4	41.02 ±6.3	38.01 ±1.6
104	30.87 ± 4.7	18.64 ± 1.2	55.10 ±6.5	38.00 ±2.5

SI Table 3 S(I) (signal %-change with respect to NTC) for electrochemical detection on 20%-TVO and SPE for $10^{1} - 10^{4}$ copies of pure SARS-CoV-2 RdRp plasmid DNA and RNA.

SI Table 4 S(I) (signal %-change with respect to NTC) for electrochemical LAMP mediated detection of 100 - 1000 copies of magnetoextracted nucleic acid from aqueous, human genomic DNA spiked, and serum spiked sample on 20%-TVO electrode and SPE. TC sample implies non-magneto-extracted LAMP for 1000 copies.

Target		S(I) for DNA		S(I) for RNA	
Sample	Concentration	20%-TVO	SPE	20%-TVO	SPE
Aqueous	ТС	46.51 ±6.4	46.17 ±1.8	66.63 ±0.5	44.19 ± 1.7
	100	16.39 ± 7.4	32.17 ± 1.9	53.71 ±18.8	40.18 ±2.8
	1000	37.99 ± 3.8	$41.49\pm\!\!0.7$	63.67 ± 17.2	7.23 ± 0.6
Human Genomic	ТС	$56.51 \pm \! 6.4$	$46.80\pm\!\!0.0$	36.16 ± 3.6	31.04 ± 1.4
	100	53.82 ±2.7	$44.62\pm\!\!0.9$	7.63 ±3.5	22.21 ±1.9
	1000	47.26 ± 0.7	34.04 ± 0.9	35.69 ±2.1	26.42 ± 0.2
Serum	ТС	59.32 ± 4.2	$49.19\pm\!\!3.4$	25.18 ±6.5	40.08 ± 2.8
	100	36.71 ±7.0	14.18 ±0.6	14.23 ±5.3	7.33 ±2.3
	1000	49.51 ± 7.4	17.87 ± 1.5	17.98 ±6.2	13.29 ±2.2

SI Figure 1 Electroanalytical data of 100^µM-MB for FTO alone and 20%-TVO deposited FTO.

SI Figure 2 Redox pair for the electrochemical probe methylene blue (MB)

SI Figure 3 X-ray diffraction pattern (a-c) Deconvolution of 26.5° peak into FTO, V, and Ti peaks for 10, 30, 40%-TVO.

SI Figure 4 X-ray photoelectron spectroscopy analysis. (a-c) V 2p3/2, (d-f) O 1s, (g-i) Ti 2p for 10, 30, and 40%-TVO electrodes.

SI Figure 5 FE-SEM micrographs of 10%, 30%, and 40% -TVO, respectively.

SI Figure 6 Measured thickness profiles of 0 to 50%- TVO layers.

SI Figure 7 Bode plot for 0 to 50%-TVO electrodes with 100 μ M MB.

SI Figure 8 Calibration curve for concentrations (100-12.5 μ M) of methylene blue (MB) in 10 mM tris-HCl buffer using chronoamperometry. (a) Chronoamperometry measurements recorded on 20%-TVO electrode using MB solutions. (Inset: magnified view of the data in nA current range). (b) Calibration curve for MB detection constructed from the measurements presented in panel (a) where the current measured after 100 s was plotted as a function of MB concentration.

SI Figure 9 I-V characteristics of 20%-TVO collected for 100^µM MB and buffer alone.

SI Figure 10 Current signal comparison of 20%-TVO electrode and MnO_2 (FM550) electrode for 100µM-MB solution (the data presented is an average of n=5 cycles).

SI Figure 11 Chronoamperometry of electrochemical LAMP experiment on NTC and plasmid DNA with 10³ initial target copies.

Reference:

- 1 E. F. A. Zeid, I. A. Ibrahem, A. M. Ali and W. A. A. Mohamed, *Results Phys*, 2019, **12**, 562–570.
- 2 B. Yahmadi, N. Kamoun, C. Guasch and R. Bennaceur, *Mater Chem Phys*, 2011, **127**, 239–247.
- 3 V. D. Mote, Y. Purushotham and B. N. Dole, *Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles*, 2012.