SUPPLEMENTARY MATERIAL

Determination of ofloxacin in the presence of dopamine, paracetamol, and caffeine using a glassy carbon electrode based on carbon nanomaterial and gold nanoparticles

Rebeca M. S. Silva^a, Anderson M. Santos^b, Ademar Wong^b, Orlando Fatibello-Filho^b,

Fernando C. Moraes^b and Marco A. S. Farias^{c*}

^a Department of Chemistry, Federal University of Amazonas, 69080-900, Manaus-AM, Brazil.

^b Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.

^c Department of Agricultural and Rural Socioeconomics, Federal University of São Carlos, 13600-970, Araras, SP, Brazil

*Corresponding author

E-mail address: marcofarias@ufscar.br

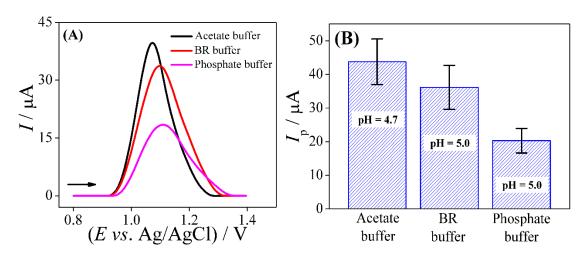


Fig. S1. (A) SW voltammograms obtained using the AuNPs-FG-CTS:EPH/GCE sensor in 5.0 μ mol L⁻¹ OFL for different support electrolyte solutions: BR, acetate, and phosphate buffer. SWV parameters: f = 10 Hz, a = 75 mV and $\Delta E_{\rm s} = 5$ mV. (B) $I_{\rm p}$ vs. analyte for the different support electrolyte solutions.

Table S1. Effect of concomitants on the SW voltammetric determination of a 4.0 μ mol L⁻¹ OFL in 0.1 mol L⁻¹ acetate buffer (pH 4.7) solution using a AuNPs-FG-CTS:EPH/GCE sensor.

Possible Interferents*	Average deviation (%)**
Microcrystalline Cellulose	1.7
Magnesium Stearate	2.8
Povidone	-2.6
Starch	1.1
Sodium Croscarmellose	-1.3
Titanium Dioxide	-3.2
Glucose	1.6
Uric Acid	2.2
Ascorbic Acid	3.1
Humic Acid	-2.8

^{*}concentration ratio: 1 : 1 (m/m) (analyte: concomitants);

^{**}n = 3.