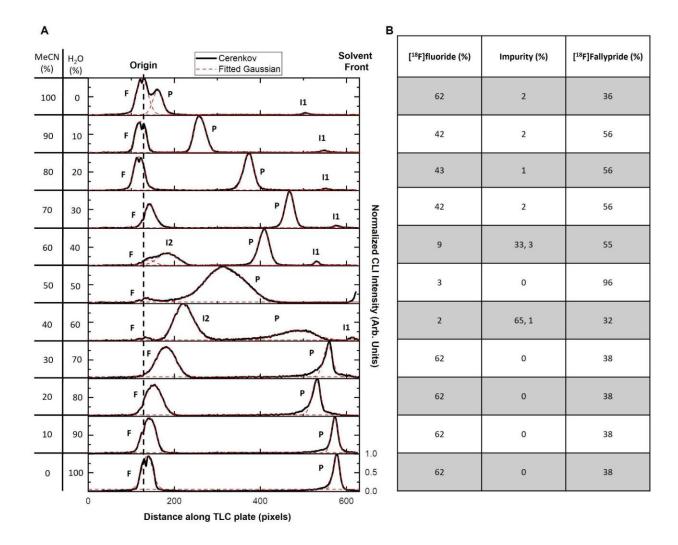

Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

Detrimental Impact of Aqueous Mobile Phases in 18F-labelled Radiopharmaceutical Analysis via Radio-TLC

Travis S. Laferriere-Holloway, Alejandra Rios, and R. Michael van Dam


Supplementary Information

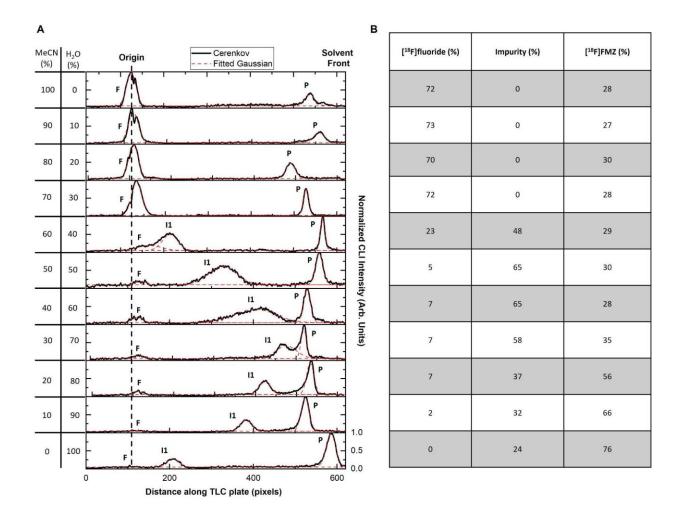

Figure S1. The effect of aqueous mobile phases (MeCN:H₂O) on the migration of [18 F]KF/K₂₂₂. **(A)** For each mobile phase composition, two images are shown: a UV image of the TLC plate spotted with K₂CO₃/K₂₂₂ and stained with I₂ (top) and a CLI image of a TLC plate spotted with [18 F]KF/K₂₂₂ (middle). **(B)** TLC chromatograms generated from the CLI images. F denotes [18 F]KF/K₂₂₂.

Table S1. Impact of water composition in aqueous mobile phases (MeCN: H_2O) on the R_f of $[^{18}F]KF/K_{222}$.

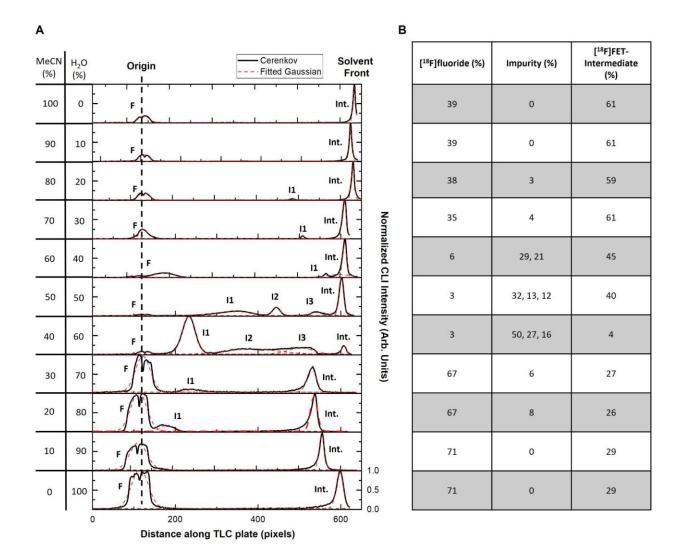

MeCN (%)	H ₂ O (%)	R_f
100	0	0.0
90	10	0.0
80	20	0.0
70	30	0.0
60	40	0.0, 0.16
50	50	0.0, 0.40
40	60	0.0, 0.53
30	70	0.0, 0.77
20	80	0.88
10	90	0.92
0	100	0.93

Figure S2. The adverse impact of water-containing mobile phases in the naive calculation of fluorination efficiency for [18F]Fallypride. **(A)** Chromatograms of samples of [18F]Fallypride/[18F]TBAF separated under different compositions of MeCN:H₂O mobile phases replicated from Figure 3. Chromatograms are annotated with the following naive assignment of bands: F ([18F]fluoride, assumed at origin), P (radiopharmaceutical product, confirmed with the spotting of Fallypride standard); I_i (additional band(s), naively assumed to be impurities). **(B)** The computed proportion of each species based on naive assumptions. The actual proportions of [18F]TBAF and [18F]Fallypride in the samples were 44% and 56%, respectively.

Figure S3. The adverse impact of water-containing mobile phases in the naive calculation of fluorination efficiency for [¹⁸F]FMZ. **(A)** Chromatograms of samples of [¹⁸F]FMZ/[¹⁸F]TBAF separated under different compositions of MeCN:H₂O mobile phases replicated from Figure 4. Chromatograms are annotated with the naive assignment of bands: F ([¹⁸F]fluoride, assumed at origin), P (radiopharmaceutical product, confirmed with the spotting of FMZ standard); I_i (additional band(s), naively assumed to be impurities). **(B)** The computed proportion of species is based on naive assumptions. The samples' actual proportions of [¹⁸F]TBAF and [¹⁸F]Fallypride were 72% and 28%, respectively.

Figure S4. The adverse impact of water-containing mobile phases in the naive calculation of fluorination efficiency for [¹⁸F]FET-intermediate. **(A)** Chromatograms of samples of [¹⁸F]FET-intermediate/[¹⁸F]TBAF separated under different compositions of MeCN:H₂O mobile phases replicated from Figure 5. Chromatograms are annotated with the naive assignment of bands: F ([¹⁸F]fluoride, assumed at origin), P (radiopharmaceutical product, assumed at the solvent front); I_i (additional band(s), naively assumed to be impurities). **(B)** The computed proportion of species is based on naive assumptions. The actual proportions of [¹⁸F]TBAF and [¹⁸F]FET-intermediate in the samples were 39% and 61%, respectively.