Supporting Information for

Thin Membrane-Based Potentiometric Sensors for Sensitive Detection of Polyions

Kaikai Wang a, b, Rongning Liang a, *, Wei Qin a

a CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding author. Fax: +86-535-2109000

E-mail address: rnliang@yic.ac.cn
Figure S1. The membranes with different thicknesses observed by using a microscope after the membranes were stained with methylene blue: (a) 150 μm, (b) 40 μm, (c) 20 μm and (d) 5 μm.
Figure S2. Potential responses of the 3-μm membrane PSE to protamine in Tris buffer.
Figure S3. Effect of the plasticizer on the potential response of the thin membrane potentiometric sensor to 0.8 μg/mL protamine. Each error bar represents one standard deviation for three measurements.
Figure S4. Influence of stirring rate on the potentiometric response of the thin membrane PSE to 0.8 μg/mL protamine. Each error bar represents one standard deviation for three measurements.
Figure S5. Potential responses of the classical thick-membrane PSE to protamine in Tris buffer. The potential value at 5 min was used for the quantification.