Supporting Information for

Thin Membrane-Based Potentiometric Sensors for Sensitive Detection of

Polyions

Kaikai Wang ^{a, b}, Rongning Liang ^{a, *}, Wei Qin ^a

^a CAS Key Laboratory of Coastal Environmental Processes and Ecological

Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of

Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes,

YICCAS, Yantai, Shandong 264003, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding author. Fax: +86-535-2109000

E-mail address: mliang@yic.ac.cn

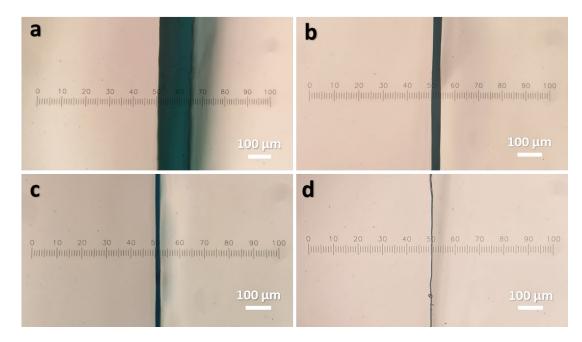


Figure S1. The membranes with different thicknesses observed by using a microscope after the membranes were stained with methylene blue: (a) 150 μ m, (b) 40 μ m, (c) 20 μ m and (d) 5 μ m.

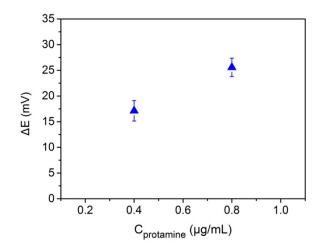


Figure S2. Potential responses of the $3-\mu m$ membrane PSE to protamine in Tris buffer.

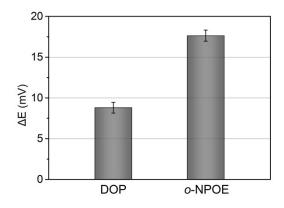


Figure S3. Effect of the plasticizer on the potential response of the thin membrane potentiometric sensor to $0.8 \ \mu g/mL$ protamine. Each error bar represents one standard deviation for three measurements.

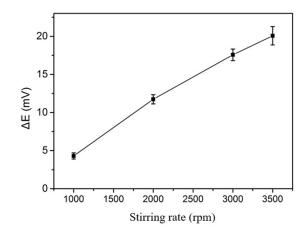
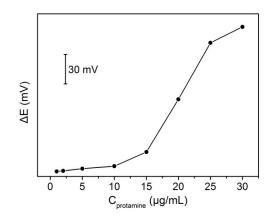



Figure S4. Influence of stirring rate on the potentiometric response of the thin membrane PSE to 0.8 μ g/mL protamine. Each error bar represents one standard deviation for three measurements.

Figure S5. Potential responses of the classical thick-membrane PSE to protamine in Tris buffer. The potential value at 5 min was used for the quantification.