Electronic Supplementary Information

Facile room temperature synthesis of $NiFe_2O_4$ -based magnetic covalent organic framework for the extraction of tetracycline residues in environment water samples prior to HPLC

Wanliang Liao, ^a Yang Xu, ^a Dingyun Li, ^b Yixing Ye, ^a Yuhan Ning, ^a Weiping

Wang \ast_a and Ai-jun Wang $^{\rm c}$

^a College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

^b Hydrological Management Center of Jinhua, Jinhua 321004, China

^c College of Geography and Environmental Sciences, Zhejiang Normal University,

Jinhua 321004, China

Fig.S1 FT-IR spectra of NiFe₂O₄@TAPB-TPA treated with different solvents for 48 h.

Fig.S2 Small-angle XRD patterns of NiFe₂O₄@TAPB-TPA.

 $Fig. S3 \ {\rm Zeta} \ {\rm potential} \ {\rm of} \ NiFe_2O_4 @ TAPB-TPA.$

Fig.S4 Effect of oxalic acid concentration on the extraction recovery. The ratio of MeOH, ACN and oxalic acid was 1:2:7 (v:v:v); other conditions were the same as those in Fig. 4C.

Fig. S5 Effect of eluent type on extraction recovery. Types of eluent were consisted of MeOH, ACN and oxalic acid (0.01 mol L^{-1}) at different ratio (v:v:v) : (1) 1:2:7; (2) 2:1:7; (3) 2.5:0.5:7; (4) 1:3:6; (5)2:2:6; (6) 3:2:5; (7) 1:1:8.

6 Adsorption isotherms and adsorption kinetics of TCs on NiFe₂O₄@TAPB-TPA. (A) Langmuir isotherm model curves; (B) Freundlich isotherm model curves; (C) Pseudofirst order model curves; and (D) Pseudo-second order model curves.

Fig.S7 The FT-IR spectra of $NiFe_2O_4@TAPB$ -TPA before and after adsorption.

Fig.S8 Reusability of the NiFe₂O₄@TAPB-TPA as adsorbent.

Tables

Analytes	Abbreviation	Structure	Molecular weight	log _{Kow} ^a
Tetracycline	TC		444.45	-1.47
Methacycline	MTC		442.42	0.26
Doxycycline	DC		444.43	0.35

 Table S1 Some physical-chemical parameters of TCs.

^a: log_{Kow}: n-octanol/water partition coefficients, an indicator for hydrophobicity. Data taken from RSC Publishing Home: http://www.chemspider.com

Analytes	Langmuir				Freundlich		
	K _L (L mg ⁻¹)	Q _{max} (mg g ⁻¹)	R ²	K _F	n	R ²	
TC	0.97	57.87	0.9956	23.63	4.72	0.9901	
MTC	3.25	56.53	0.9969	25.34	4.70	0.9061	
DC	1.02	38.39	0.9905	24.96	7.54	0.6627	

Table S2 Results of isothermal models for the adsorption of NiFe₂O₄@TAPB-TPA towards TCs.

	Qe, exp	Pseudo-first-order model			Pseudo-second-order model			
TCs	(mg g ⁻¹)	K ₁	Q_e R^2		K ₂	Qe	R ²	
		(min ⁻¹)	(mg g ⁻¹)		(g mg ⁻¹ min ⁻¹)	(mg g ⁻¹)		
TC	4.39	3.23×10-3	1.82	0.9046	7.44×10 ⁻³	4.48	0.9951	
MTC	6.68	2.90×10-3	1.51	0.6581	8.35×10 ⁻²	6.69	0.9972	
DC	7.12	1.99×10-3	1.10	0.4768	1.20×10-2	7.03	0.9960	

Table S3 Results of kinetic models for adsorption of NiFe₂O₄@TAPB-TPA towards TCs.

Sorbent	Method	Mass of sorbent (mg)	Linear range (µg L ⁻¹)	LODs (µg L ⁻ ¹)	Recovery (%)	RSD (%)	Ref
PAN@COF-	PT-SPE ⁵ -	10	4 70	0620	977 1175	1205	19
SCU1 ¹	HPLC	10	4-70	0.0-3.0	82./-11/.3	1.2-9.5	40
RACNTs ²	SDE6 LIDL C	10	50 200	7.5-	46.0.60.6	4.0-	49
	SPE°-HPLC	10	50-200	13.2	40.9-09.0	17.6	
CTP _{CC-TP} ³	SDE LIDI C	60	26.6 1500	8.0-	91 2 09 7	2077	50
	SPE-HPLC	60	20.0-1500	16.8	01.3-90.7	5.9-1.1	
SCAU-1 and	CDE LIDI C7	(0)	1 500	8.0-	88.4-93.4	2.5-4.8	51
SNW-1	SPE-UPLC'	60	1-300	16.8			51
Oasis HLB ⁴	ODE LIDI C	200	50,500	17.2-	02 2 111 0	3.5-	50
	SPE-HPLC	200	50-500	21.0	83.3-111.8	16.2	32
NiFe ₂ O ₄ @TAPB-	MSPE-	4	1.500	0.09-	91.6-102.7	0.7-4.2	This
TPA	HPLC		1-300	0.26			work

 Table S4 Comparison of proposed method with reported methods for TCs analysis.

¹ polyacrylonitrile@COFs- SCU1, SCU stands for Sichuan University

² restricted access carbon nanotubes

³ microporous covalent triazine-terphenyl polymer

⁴ Commercial adsorbent

⁵ Pipette tip solid phase extraction

⁶ Solid phase extraction

⁷ Ultra-performance liquid chromatography