Supporting Information

Fluorescent probes based on core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection

Guoli Wu^a, Yongdan Zhao^b, Xiaofang Li^c, Xiaolin Lu^band Tingli Qu^b*

^a Department of Pharmacy, Children's Hospital of Shanxi, Taiyuan 030013, China.

^b College of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.

^c College of Life Science, Inner Mongolia Agricultural University, huhehot, 010000, China.

*Correspondence: Tingli Qu, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan,030013, China. E-mail:qu_tingli@163.com, ORCID: 0000-0002-5219-2724.

Figure S1. Fluorescence spectra of R-AuNPs, R-AuNPs-MIP under different conditions.(A) Quenching of rhodamine b fluorescence by gold nanoparticles at a series of concentrations. (B) Fluorescence intensity at 585nm after quenching rhodamine B by gold nanoparticles at a series of concentrations. The star illustration represents the concentration selection for subsequent experiments in this paper. (C) Fluorescence intensity comparison of Rhodamine b, R-AuNPs and R-AuNPs with GSH. (D) Fluorescence intensity comparison of Rhodamine b, R-AuNPs and R-AuNPs with GSH.

Figure S2. Selective testing of R-AuNPs detection systems.

Table S1. glutathione analysis methods.

Materials and methods	Detection	LOD/	analysis	selectivity	Ref.
	range/ μM	μΜ	time*/ min		
Colorimetric method based on Fe-doped ${\sf MoS}_2$ nanomaterials	1 - 30	0.577	20	No obvious interference items	[1]
HPLC with coulometric electrochemical detection	5 - 2000	2.1	15	#	[2]
Ratiometric Fluorescent Probe	16 - 200	0.89	15	#	[3]
Voltammetric detection based on copper ion complex	1-12.5	0.14	#	No obvious interference items	[4]
Fluorescence Switching of Graphene Quantum Dots	20-500	3.4	20	No obvious interference items	[5]
Electroanalytical Monitoring based on Novel Pt/SWCNTs- Ionic Liquid	0.1-225	0.02	15	No obvious interference items	[6]
Red-emission carbon dots fluorescent probe	1-70	0.41	5	No obvious interference items	[7]
Core-shell structure of molecular imprinted materials and gold nanoparticles	0-100	0.18	15	No obvious interference items	This
					work

*: Time required to test or prepare for testing, excluding preparation of materials.

#: Not mentioned in the paper

[1] P. Singh, RP. Ojha, S. Kumar, AK. Singh, R. Prakash, Materials Physics and Chemistry, 2021, 267, 124684.

[2] R. Kandar, P. Zakova, M. Markova, H. Lotkova, O. Kucera, Z. Cervinkova, Collection of Czechoslovak Chemical Communications, 2011, 76, 277-294.

[3] RJ. Yang, Y. Tang, WP. Zhu, Chemical journal of chinese universities, 2016, 37, 643-647.

[4] MCC. Areias, K. Shimizu, Analyst, 2016, 141, 2904-2910.

[5] XY. Li, Q. Zhang, N. Wang, JJ. Liu, J. Wang, Chinese journal of analytical chemistry, 2020, 48, 339-346.

[6] FH. Moghadam, MA. Taher, H. Agheli, Topics in Catalysis, 2022, 65, 677-683.

[7] G. Ning, B. Li, JJ. Liu, Q. Xiao, S. Huang, Analytical and bioanalytical chemistry, 2022, 414, 2219-2233.