Supporting Information

Surface charge modulation enhanced high stability of gold oxidation intermediate for electrochemical glucose sensors

Qingyi Yang^{a,b}, Fengchao Sun^{a,b}, Xingzhao Wang^{a,b}, Jiabing Luo^a, Shutao Wang^{b,*}, Cuiping Jia^c, Yuan Pan^{b,*}, Jun Zhang^a, Yan Zhou^{a,*}

- a. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, CHINA
- b. School of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, CHINA
- c. College of Science, China University of Petroleum (East China), Qingdao 266580, CHINA

Corresponding Authors:

shtwang@upc.edu.cn; panyuan@upc.edu.cn; yanzhou@upc.edu.cn

Table S1 Inductively coupled plasma emission spectra result of Au300 Cu Foam, Au300Fe Foam and Au300 Ni Foam.

Inductive Coupled Plasma Emission Spectrometer		
Element	Weight (%)	Atomic Ratio
Cu	99.4403	1
Au	0.4317	0.0014
Fe	99.3168	1
Au	0.0419	0.00012
Ni	99.1595	1
Au	0.5682	0.0017
	Element Cu Au Fe Au Ni Au	Element Weight (%) Cu 99.4403 Au 0.4317 Fe 99.3168 Au 0.0419 Ni 99.1595 Au 0.5682

Fig S1. (a)CV curves of (a)Au300 Cu Foam, (b)Au300 Fe Foam, (c)Au300 Ni Foam, (d)Cu Foam, (e)Fe Foam, and(f)Ni Foam in 0.1 M KOH with scan rate of 60, 90, 120, 150, 180, 210, and 240 mV s⁻¹. (g-i) The C_{dl} of different samples.

Fig S2. (a)Chronoamperometry response of Cu Foam and Au300 Cu Foam toward glucose in 0.1 M KOH with continuous glucose at 0.5 V *vs.* Ag/AgCl. (b)Chronoamperometry response of Cu Foam and Au300 Cu Foam toward glucose in 0.1 M KOH with continuous glucose at 0.4 V *vs.* Ag/AgCl.

Fig S3. The enlarged figure of Chronoamperometry response of Au300 Cu Foam toward glucose in 0.1

M KOH with continuous glucose at 0.4 V vs. Ag/AgCl.

Fig S4. Chronoamperometry response of (a)Au300 Cu Foam, (b)Au300 Fe Foam, and (c)Au300 Ni Foam

toward glucose in 0.1 M KOH with continuous glucose at the various test potential.

Fig S5. Chronoamperometry response of Au300 Cu Foam toward (a)urea and (b) ascorbic acid (VC) in

0.1 M KOH in the absence of glucose at 0.4 V vs. Ag/AgCl.

Fig S6. SEM image of Au300 Cu Foam after the stability test.