Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Material

Simple and practical solvent system selection strategy for high-speed countercurrent chromatography based on the HPLC

polarity parameter model

Xiaohan Zhu<sup>a, b</sup>, Pengcheng Li<sup>a</sup>, Jintian Tang<sup>a</sup>, Yanqi Su<sup>c</sup>, Mi Xiao<sup>c\*</sup>, Hongkun Xue<sup>a\*</sup>, Xu Cai<sup>a\*</sup>

<sup>a</sup>Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R.China

<sup>b</sup>Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R.China

<sup>c</sup>Medicament department, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan Caidian People's Hospital, Wuhan 43000, P.R.China

\*Corresponding authors: Xu Cai Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R.China.

Email: caixu1.2019@tsinghua.org.cn

\* Additional corresponding author

Hongkun Xue

Email: xuehk@mail.tsinghua.edu.cn

Mi Xiao

Email: 13769140853@163.com

## **Table of Contents**

| CONTENTS                                                                                                                 | page |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| Table S1 Parameters of stationary phase of different columns under the same conditions                                   |      |  |  |  |  |  |  |
| Table S2. Parameters of stationary phase under different flow rates and methanol concentrations for compounds of group 1 |      |  |  |  |  |  |  |
| Table S3. Parameters of stationary phase under different flow rates and methanol concentrations for compounds of group 2 | 7    |  |  |  |  |  |  |
| Table S4. HPLC analysis conditions for mangosteen peel and <i>H. sampsonii</i> Hance                                     | 8    |  |  |  |  |  |  |
| Table S5. <sup>1</sup> H, <sup>13</sup> C-NMR data for Compound 1 and 2                                                  | 9~10 |  |  |  |  |  |  |
| Figure S1. Chemical structure of standard compounds.                                                                     | 11   |  |  |  |  |  |  |
| Figure S2. Representative HPLC chromatograms.                                                                            | 12   |  |  |  |  |  |  |
| Figure S3. The HPLC chromatogram of mangosteen peel.                                                                     | 13   |  |  |  |  |  |  |
| Figure S4. The HPLC chromatogram of H. sampsonii Hance                                                                   | 14   |  |  |  |  |  |  |
| Figure S5. The HSCCC chromatogram of mangosteen peel and H. sampsonii Hance.                                             | 15   |  |  |  |  |  |  |
| Figure S6. The structure of mangostin and quercitrin.                                                                    | 16   |  |  |  |  |  |  |
| Figure S7. <sup>1</sup> H-NMR (400 MHz, CDCl3) Spectrum of Compound 1                                                    | 17   |  |  |  |  |  |  |

| Figure S8. <sup>13</sup> C-NMR (100 MHz, CDCl <sub>3</sub> ) Spectrum of Compound 1         | 18 |
|---------------------------------------------------------------------------------------------|----|
| Figure S9. <sup>1</sup> H-NMR (400 MHz, CD <sub>3</sub> OD) Spectrum of Compound <b>2</b>   | 19 |
| Figure S10. <sup>13</sup> C-NMR (100 MHz, CD <sub>3</sub> OD) Spectrum of Compound <b>2</b> | 20 |

| Column   | Reference<br>compound | р     | Flow rate<br>(mL/min) | B% (Methanol) | t <sub>0</sub> | t <sub>R</sub> | $P_m^N$ | $(\log k)_0$ | $P_s^N$ |
|----------|-----------------------|-------|-----------------------|---------------|----------------|----------------|---------|--------------|---------|
| Calumn 1 | Honokiol              | 4.31  |                       |               | 2 150          | 5.250          | 0.2267  | 5.9474       | 1.5217  |
| Column 1 | Magnolol              | 3.923 |                       |               | 2.150          | 7.267          | 0.2267  |              | 1.5217  |
| Column 2 | Honokiol              | 4.31  | 1.0                   | 000/          | 1 714          | 5.224          | 0.22(7  | 4.9171       | 1 2012  |
| Column 2 | Magnolol              | 3.923 | 1.0                   | 80%           | 1./14          | 6.832          | 0.2267  |              | 1.2013  |
|          | Honokiol              | 4.31  |                       |               | 1.000          | 4.017          | 0.2267  | 5.8428       | 1 22/2  |
| Column 3 | Magnolol              | 3.923 |                       |               | 1.000          | 5.617          | 0.2267  |              | 1.3262  |

**Table S1** Parameters of stationary phase of different columns under the same conditions

|                       |                    |       | Mobile phase composition (B% $\nu/\nu$ ) |                |              |         |                        |                |               |         |                |                |               |         |                |                |              |               |       |        |        |
|-----------------------|--------------------|-------|------------------------------------------|----------------|--------------|---------|------------------------|----------------|---------------|---------|----------------|----------------|---------------|---------|----------------|----------------|--------------|---------------|-------|--------|--------|
| Flow rate<br>(mL/min) | Reference compound | р     |                                          | 75 ( $P_m^N$   | = 0.2625)    |         |                        | $80 (P_m^N)$   | = 0.2267)     |         |                | 85 $(P_m^N)$   | = 0.1922)     |         |                | 90 ( $P_n^N$   | n= 0.1588)   |               |       |        |        |
|                       |                    |       | t <sub>0</sub>                           | t <sub>R</sub> | $(\log k)_0$ | $P_S^N$ | t <sub>0</sub>         | t <sub>R</sub> | $(\log k)_0$  | $P_S^N$ | t <sub>0</sub> | t <sub>R</sub> | $(\log k)_0$  | $P_S^N$ | t <sub>0</sub> | t <sub>R</sub> | $(\log k)_0$ | $P_S^N$       |       |        |        |
| 0.8                   | Honokiol           | 4.31  | 1.25                                     | 7.483          | 6 9246       | 1 4755  | 1.25                   | 5.033          | 5 9021        | 1 2162  | 1.25           | 3.633          | 4 7110        | 1 1256  | 1.25           | 2.817          | 2 7497       | 0.0761        |       |        |        |
| 0.8                   | Magnolol           | 3.923 | 1.25                                     | 11.217         | 0.8340       | 1.4755  | 7.017                  | 7.017          | 5.8051 1.5162 | 1.3102  | 1.25           | 4.683          | 4.7110        | 1.1330  | 1.25           | 3.400          | 5./48/       | 0.9761        |       |        |        |
| 0.0                   | Honokiol           | 4.31  | 1 1 1                                    | 1 1 1          | 1 11         | 6.700   | 6.700                  | 6 9669         | 1 4800        | 1 1 1   | 4.467          | 5 01/1         | 5 9141 1 2102 | 1 1 1   | 3.233          | 4 7002         | 1 1249       | 1 1 1         | 2.517 | 2 9152 | 0.0804 |
| 0.9                   | Magnolol           | 3.923 | 1.11                                     | 10.067         | 0.0000       | 1.4809  | 6.233                  | 6.233          | 5.8141        | 1.3193  | 1.11           | 4.167          | 4.7093        | 1.1348  | 1.11           | 3.0            | 3.050        | 5.6152 0.9894 |       |        |        |
| Honc<br>1.0<br>Magr   | Honokiol           | 4.31  | 6.050<br>1.00<br>9.083                   | 6.050          |              |         | 4.017<br>1.00<br>5.617 | 4.017          |               |         |                | 2.900          |               |         |                | 2.200          |              |               |       |        |        |
|                       | Magnolol           | 3.923 |                                          | 9.083          | 6.8579       | 1.4779  |                        | 5.8428         | 1.3262        | 1.00    | 3.733          | 4.6906 1.      | 1.1316        | 1.00    | 2.633          | 3.6136         | 0.9549       |               |       |        |        |

## Table S2 Parameters of stationary phase under different flow rates and methanol concentrations for compounds of group 1

|                       |                       |                  |                              |                         |              |             | Mobile phase composition (B% $\nu/\nu$ ) |                         |              |             |                         |                      |              |         |                         |                      |              |         |  |  |
|-----------------------|-----------------------|------------------|------------------------------|-------------------------|--------------|-------------|------------------------------------------|-------------------------|--------------|-------------|-------------------------|----------------------|--------------|---------|-------------------------|----------------------|--------------|---------|--|--|
| Flow rate<br>(mL/min) | Reference<br>compound | р                | $60 \ ({}^{P_m^N} = 0.3775)$ |                         |              |             | $65 \left( {{P_m^N} = 0.3378} \right)$   |                         |              |             | $70 (P_m^N = 0.2995)$   |                      |              |         | 75 ( $P_m^N = 0.2625$ ) |                      |              |         |  |  |
|                       |                       | ind <sup>2</sup> | t <sub>0</sub><br>(min)      | t <sub>R</sub><br>(min) | $(\log k)_0$ | $P_S^N$     | t <sub>0</sub><br>(min)                  | t <sub>R</sub><br>(min) | $(\log k)_0$ | $P_S^N$     | t <sub>0</sub><br>(min) | t <sub>R</sub> (min) | $(\log k)_0$ | $P_S^N$ | t <sub>0</sub> (min)    | t <sub>R</sub> (min) | $(\log k)_0$ | $P_S^N$ |  |  |
|                       | vitexicarpin          | 4.31             |                              | 19.716                  |              |             |                                          | 16.589                  |              |             |                         | 12.500               |              |         |                         | 7.917                |              |         |  |  |
| 0.8                   | apigenin              | 3.923            | 1.25                         | 33.635                  | 8.9491 1.8   | 1.8291 1.25 | 27.635                                   | 8.5479 1.739            | 1.7393       | 393 1.25    | 19.917                  | /.8369               | 1.6080       | 1.25    | 12.000                  | 6.9945               | 1.4969       |         |  |  |
|                       | vitexicarpin          | 4.31             |                              | 18.623<br>.11<br>31.826 | 18.623       | 1.0204      | 8294 1.11                                | 15.573                  | 0.5640       | 5649 1.7296 | 1.11                    | 11.617               | 20115        | 1 (120  | 1.1.1                   | 7.017                | 7.0000       | 1 5012  |  |  |
| 0.9                   | apigenin              | 3.923            | 1.11                         |                         | 9.0150       | 1.8294      |                                          | 25.894                  | 8.5649       |             |                         | 18.583               | 7.9115       | 1.6138  | 1.11                    | 10.650               | 7.0099       | 1.5013  |  |  |
|                       | vitexicarpin          | 4.31             |                              | 17.603                  | 17.603       | 17.603      |                                          |                         |              | 14.457      |                         |                      |              | 10.150  |                         |                      |              | 6.283   |  |  |
| 1.0                   | apigenin              | apigenin 3.923   | 1.00                         | 29.946                  | 9.0000       | 1.8138      | 1.00                                     | 24.089                  | 8.6119       | 1.7328      | 1.00                    | 16.333               | 7.9632       | 1.6335  | 1.00                    | 9.500                | 6.9609       | 1.4913  |  |  |

## Table S3 Parameters of stationary phase under different flow rates and methanol concentrations for compounds of group 2

| Mobile phase composition (B%, v/v) | Flow rate (mL/min) | Column temperature (°C) | UV detector temperature (°C) | Wavelengths of the UV detector (nm) |
|------------------------------------|--------------------|-------------------------|------------------------------|-------------------------------------|
| 90% Methanal                       | 1.0                | 30                      | 30                           | 254, 280, 365                       |
| 60% Methanal                       | 1.0                | 30                      | 30                           | 254, 280, 365                       |

 Table S4
 HPLC analysis conditions for mangosteen peel and H. sampsonii Hance

|          | Compound 1                             |       |          | Compound 2                        |       |
|----------|----------------------------------------|-------|----------|-----------------------------------|-------|
| Position | $\delta_{\mathrm{H}}(J \text{ in Hz})$ | δς    | Position | $\delta_{\rm H}(J \text{ in Hz})$ | δς    |
| 1        |                                        | 160.1 | 1        |                                   |       |
| 2        |                                        | 109.9 | 2        |                                   | 157.8 |
| 3        |                                        | 162.1 | 3        |                                   | 134.8 |
| 4        | 6.20, s                                | 91.7  | 4        |                                   | 178.2 |
| 4a       |                                        | 154.7 | 5        |                                   | 161.8 |
| 4b       |                                        | 156.4 | 6        | 6.22, d, <i>J</i> = 1.9 Hz        | 93.3  |
| 5        | 6.65, s                                | 101.3 | 7        |                                   | 164.6 |
| 6        |                                        | 155.2 | 8        | 6.38, d, <i>J</i> = 2.0 Hz        | 98.4  |
| 7        |                                        | 143.3 | 9        |                                   | 157.1 |
|          |                                        |       | 10       |                                   | 104.4 |
| 8        |                                        | 136.9 | 1′       |                                   | 121.5 |
| 8a       |                                        | 110.7 | 2′       | 7.36, d, $J = 2.0$ Hz             | 114.9 |
| 8b       |                                        | 102.3 | 3′       |                                   | 145.0 |
| 9        |                                        | 181.6 | 4′       |                                   | 148.4 |

## Table S5 <sup>1</sup>H-NMR (4000MHz) data for Compound 1 and 2

| 1′                  | 3.27, d, <i>J</i> = 7.2 Hz | 25.7  | 5′  | 6.93, d, <i>J</i> = 8.2 Hz | 115.5 |
|---------------------|----------------------------|-------|-----|----------------------------|-------|
| 2'                  | 5.24, m                    | 123.8 | 6′  | 7.33, d, <i>J</i> = 8.4 Hz | 121.4 |
| 3′                  |                            | 130.2 | 1′′ | 5.37, s                    | 102.1 |
| 4′                  | 1.67, s                    | 24.6  | 2′′ |                            | 70.6  |
| 5′                  | 1.79, s                    | 16.5  | 3'' |                            | 70.7  |
| 1′′                 | 4.04, d, <i>J</i> = 4.6 Hz | 20.8  | 4′′ |                            | 71.8  |
| 2′′                 | 5.24, m                    | 122.5 | 5'' |                            | 70.5  |
| 3''                 |                            | 130.2 | 6'' | 0.96, d, J = 6.0  Hz       | 16.2  |
| 4′′                 | 1.68, s                    | 24.6  |     |                            |       |
| 5′′                 | 1.82, s                    | 16.9  |     |                            |       |
| OCH <sub>3</sub> -7 | 3.75, s                    | 59.9  |     |                            |       |



Figure S1. Chemical structure of standard compounds.



**Figure S2.** Representative HPLC chromatograms. Experimental conditions: column: Agilent ZORBAX SB-C18 column (5  $\mu$ m particle size, 4.6 × 250 mm, marked as column 1); mobile phase: 80% methanol; flow rate: 1.0 mL/min; column temperature: 30°C; detector temperature: 30°C; detector



**Figure S3.** The HPLC chromatogram of mangosteen peel. Experimental conditions: column: Kromasil 100-5-C18 column (5  $\mu$ m particle size, 4.6 × 150 mm); mobile phase: 90% methanol; column temperature: 30°C; detector temperature: 30°C; detection wavelength: 254 nm.



**Figure S4.** The HPLC chromatogram of *H. sampsonii* Hance. Experimental conditions: column: Agilent Eclipse XDB-C18 column (5  $\mu$ m particle size, 9.4 × 250 mm); mobile phase: 60% methanol; column temperature: 30°C; detector temperature: 30°C; detection wavelength: 254 nm.



**Figure S5.** The HSCCC chromatogram of mangosteen peel and *H. sampsonii* Hance. Experimental conditions: solvent system: n-hexane-ethyl acetate-methanol-water (6:3:2:1 for mangosteen peel and 1:4:1:4 for *H. sampsonii* Hance, v/v/v/v); resolution speed: 900 rpm; separation temperature: 30°C; detection wavelength: 254 nm. The peaks marked in two chromatogram are mangostin and quercitrin.



Figure S6. The structure of mangostin and quercitrin.



Figure S7. <sup>1</sup>H-NMR (400 MHz, CDCl3) Spectrum of Compound 1.



Figure S8. <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) Spectrum of Compound 1.



Figure S9. <sup>1</sup>H-NMR (400 MHz, CD<sub>3</sub>OD) Spectrum of Compound 2.



Figure S10. <sup>1</sup>H-NMR (100 MHz, CD<sub>3</sub>OD) Spectrum of Compound 2.