Naphthalimide-tyrosine-based dicationic amphiphile for intracellular 'turnon' simultaneous detection of ATP and CTP

Poonam Sharma^a, Sugandha Kumar^b, Amandeep Walia^c, Satwinder Singh Marok^d, Vanita Vanita^{*c} and Prabhpreet Singh^{*a} ^aDepartment of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001

(Pb.)-India

^bSchool of Physical Sciences, Starex University, Gurugram

^cDepartment of Human Genetics, Guru Nanak Dev University, Amritsar (Pb.)-India

^dApotex Inc., 150 Signet Drive, Toronto, ON, M9L1T9 Canada

Figure 1a: ¹H NMR Spectrum of compound 2.

Figure 1b: ¹³C NMR Spectrum of compound 2.

Figure 1c: FTIR Spectrum of compound 2.

Figure 2a: ¹H NMR Spectrum of compound 3.

Figure 2b: ¹³C NMR Spectrum of compound 3.

Figure 2c: FTIR Spectrum of compound 3.

Figure 3a: ¹H NMR Spectrum of compound 4.

Figure 3b: ¹³C NMR Spectrum of compound 4.

Figure 3c: FTIR Spectrum of compound 4.

Figure 4a: ¹H NMR Spectrum of compound YN-1.

Figure 4b: ¹³C NMR Spectrum of compound YN-1.

Figure 4c: FTIR Spectrum of compound YN-1.

Figure 4d: Mass Spectrum of YN-1.

Figure S5: determination of degree of aggregation α_{agg} and Gibbs free energy (ΔG) from absorbance data recorded in 0–100 % water fraction in DMSO.

Figure S6a: Dynamic light scattering (DLS) data of YN-1 (5 μ M) in CHCl₃.

Figure S6b: Dynamic light scattering (DLS) data of **YN-1** (5 μ M) in (a) DMSO and in different water fractions such as (b) 30% water; c) 50% water and; d) 90% water fractions in DMSO for measuring the size of aggregates.

Figure S6c: Dynamic light scattering (DLS) data of **YN-1** (5 μ M) in (a) DMF; and different water fractions such as (b) 30%; (c) 50% and (d) 90% in DMF for measuring the size of the aggregates.

Figure S7: Absorbance spectrum of YN-1 (10 μ M) upon addition of NPPs in HEPES buffer: DMSO (2:8, v/v, pH 7.2) solution.

Figure S8: Partial ¹H NMR spectra of a) YN-1 (1 mM) and upon addition of 10 equivalents of b) YN-1+ATP and; c) YN-1+CTP in DMSO- d_6 solvent showing proposed mechanism and comparison of concentration-based discrimination between ATP and CTP (10 equivalents).

Figure S9: Proposed mechanism of a) YN-1 (1 mM) +ATP; and b) YN-1+CTP.

Figure S10. The MTT assay of YN-1.

Table S1. Summary of the reported fluorescent probes for ATP and CTP. HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; PBS: phosphate-buffered saline; Tris; tris(hydroxymethyl) aminomethane; DMSO: dimethyl sulfoxide; DMF: dimethylformamide; THF: tetrahydrofuran; λ_{ex} = excitation wavelenghth; λ_{em} = emission wavelength; Sensitivity: lowest detection limit.

Structure	Туре	Selectivity	Media	Sensitivity	Applicati ons	Ref.
V V V V V V V V	Turn-on $(\lambda_{ex} = 360 \text{ nm}, \lambda_{em} = 440 \text{ nm})$	ATP and CTP	HEPES buffer: DMSO (2:8, v/v, pH 7.2)	1.72 nM (ATP); 7.1 nM (CTP)	Cell imaging	Present Manuscript
enter all all all all all all all all all al	Turn-on $(\lambda_{ex}=323 \text{ nm}, \lambda_{em}=550 \text{ nm})$	ATP	THF: H ₂ O (1:1, v/v)	19.6 µM	-	1.
	Turn-on $(\lambda_{ex}=315 \text{ nm}, \lambda_{em}=564 \text{ nm})$	ATP	PBS buffer (pH = 7.4)	5 μΜ	Cell imaging	2.
	Turn-on $(\lambda_{ex}=350 \text{ nm}, \lambda_{em}=380 \text{ nm} \text{ and } 550 \text{ nm})$	ATP CTP	DMSO: TRIS buffer+100 mM NaCl (0.2:9.8, v/v, pH = 7.4)	0.08 mM	-	3.

	Turn-on $(\lambda_{ex} = 405 \text{ nm}, \lambda_{em} = 560 \text{ nm})$	АТР	H ₂ O	0.43 µM	Cell imaging	4.
	Turn-on $(\lambda_{ex} = 425 \text{ nm}, \lambda_{em} = 602 \text{ nm})$		DMF: PBS buffer (0.1:9.9, <i>v/v</i> , pH = 7.4)	67.4 nM	Cell imaging	5.
	Turn-on (λ_{ex} = 500 nm, λ_{em} = 560 nm)	АТР	HEPES (pH 7.4+10% C ₂ H ₅ OH)	3 mM	Cell imaging	6.
$\mathbf{R} \stackrel{H}{\longrightarrow} \mathbf{N} \stackrel{N}{\longrightarrow} \mathbf{N} \stackrel{CH_3}{\longrightarrow} \mathbf{N} \stackrel{N}{\longrightarrow} \mathbf{N} \stackrel{N}{\longrightarrow} \mathbf{N} \stackrel{R}{\longrightarrow} \mathbf{N} \mathsf{$	Turn-on $(\lambda_{ex} = 500 \text{ nm}, \lambda_{em} = 560 \text{ nm})$	Zn ²⁺ and ATP	CH ₃ CN: 0.01 M HEPES (9:1, <i>v/v</i> ; pH 7.4)	6.7 μM (for 1) and 1.7 μM (for 2)	-	7.
	Turn-on $(\lambda_{ex} = 480 \text{ nm}, \lambda_{em} = 634 \text{ nm})$	АТР	C ₂ H ₅ OH:H ₂ O: PBS (0.1:9.9, <i>v/v</i>)	0.05 μΜ	Cell imaging	8.
	Turn-on $(\lambda_{ex} = 345 \text{ nm}, \lambda_{em} = 471 \text{ nm})$	АТР	H ₂ O	1.5 μΜ	Cell imaging	9.

EtHN COLONNEL	Turn-on $(\lambda_{ex} = 403 \text{ nm}, \lambda_{em} = 557 \text{ nm})$	ATP	HEPES buffer (pH 5.5)	-	-	10.
	Turn-on $(\lambda_{ex}=510 \text{ nm}, \lambda_{emi}=591 \text{ nm})$	ATP ADP CTP	DMSO: PBS (4:6, v/v)	-	Cell imaging	11.
N N S	Turn-off (λ_{ex} = 440 nm, λ_{em} = 518 nm)	ATP ADP	DMSO:water (9:1, <i>v/v</i>)	-	Cell imaging and In vivo images of zebrafish.	12.
	Turn-on $(\lambda_{ex} = 520 \text{ nm}, \lambda_{em} = 583 \text{ nm})$	ATP	PBS buffer (pH 7.4)	0.033 mM	Cell imaging	13.
	Turn-off (λ_{exc} = 315 nm, λ_{emi} = 512 nm)	ATP	CH ₃ OH:water (3:1, <i>v/v</i>)	6.6 μΜ	Cell imaging	14.
	Turn-on $(\lambda_{ex}=510 \text{ nm}, \lambda_{em}=583 \text{ nm})$	АТР	HEPES buffer (pH 7.2)	-	Cell imaging	15.

	Turn-off $(\lambda_{ex} = 457 \text{ nm}, \lambda_{em} = 560 \text{ nm})$	ATP and CTP	TRIS HCl buffer (pH 7.2)	3.9 μM (ATP) and 8.3 μM (CTP)	-	16.
	Turn-on $(\lambda_{ex} = 420 \text{ nm}, \lambda_{em} = 580 \text{ nm})$	АТР	HEPES (pH = 7.2)	0.1 μΜ	Cell imaging	17.
Terbium(III)-organic framework	Turn-off $(\lambda_{ex}=330 \text{ nm}, \lambda_{emi}=493 \text{ nm}, 546 \text{ nm}, 586 \text{ nm}$ and 623 nm)	СТР	DMF:water (1 : 1, v/v)	-	-	18.
	Turn-on $(\lambda_{exc}=370 \text{ nm}, \lambda_{emi}=538 \text{ nm})$	ATP Adp	HEPES buffer (pH 7.4, 1% MeCN)	1.0 μM	Cell imaging	19.
(CH ₂) ₃ ·C-N- HO ^B -OH	Turn-on $(\lambda_{ex}=342 \text{ nm}, \lambda_{em}=482 \text{ nm})$	АТР	Polycation buffer (pH 10.2, 0.5 mM Na ₂ CO ₃ , 0.5 mM NaHCO ₃)	0.1 µM	In vitro	20.

References

- D. Giri, S. K. Raut, C. K. Behera, S. K. Patra, Diketopyrrollopyrrole anchored carbazole-altthiophene based Fe³⁺-coordinated metallopolymer for the selective recognition of ATP, *Polymer*, 2022, 253, 124951.
- 2. N. H. Kim, B. W. Kim, H. Moon, H. Yoo, R. H. Kang, J. K. Hur, Y. Oh, B. M. Kim, D. Kim, AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells, *Analytica Chimica Acta*, 2021, **1152**, 338269.
- 3. A.M. Agafontsev, A.S. Oshchepkov, T.A. Shumilova, E.A. Kataev, Binding and Sensing Properties of a Hybrid Naphthalimide–Pyrene Aza-Cyclophane towards Nucleotides in an Aqueous Solution, *Molecules*, 2021, **26**, 980.
- W. Sun, G. Liu, M. Tong, H. Wang, S. Liu, A mitochondria-targeting fluorescent sensor for onoff-on response to Cu²⁺ and ATP in cells and zebrafish, *Analyst*, 2021, 146, 1892–1896.
- Z. Wang, Y. Zhang, J. Yin, M. Li, H. Luo, Y. Yang, X. Xu, Q. Yong, S. Wang, An easily available camphor-derived ratiometric fluorescent probe with AIE feature for sequential Ga³⁺ and ATP sensing in a near-perfect aqueous media and its bio-imaging in living cells and mice, *Sensors & Actuators: B. Chemical*, 2020, **320**, 128249.
- 6. T.-B. Ren, S.-Y. Wen, L. Wang, P. Lu, B. Xiong, L. Yuan, X.-B. Zhang, Engineering a reversible fluorescent probe for real-time live-cell imaging and quantification of mitochondrial ATP, *Analytical Chemistry*, 2020, **92**, 4681-4688.
- 7. P. Adak, B. Ghosh, A. Bauza, A. Frontera, S. R. Herron, S. K. Chattopadhyay, Binuclear and tetranuclear Zn(II) complexes with thiosemicarbazones: synthesis, X-ray crystal structures, ATP-sensing, DNA-binding, phosphatase activity and theoretical calculations, *RSC Advances*, 2020, **10**, 12735-12746.
- 8. A.F. Tikum, G. Kim, A. Nasirian, J.W. Ko, J. Yoon, J. Kim, Rhodamine-based near-infrared probe for emission detection of ATP in lysosomes in living cells, *Sensors and Actuators B: Chemical*, 2019, **292**, 40-47.
- A.-X. Ding, Y.-D. Shi, K.-X. Zhang, W. Sun, Z.-L. Tan, Z.-L. Lu, L. He, Self-assembled aggregation-induced emission micelle (AIE micelle) as an interfacial fluorescence probe for sequential recognition of Cu²⁺ and ATP in water, *Sensors and Actuators B: Chemical*, 2018, 255, 440-447.
- Y.W. Jun, T. Wang, S. Hwang, D. Kim, D. Ma, K.H. Kim, S. Kim, J. Jung, K.H. Ahn, A Ratiometric Two-Photon Fluorescent Probe for Tracking Lysosomal ATP: Direct In Cellulo Observation of Lysosomal Membrane Fusion Processes, *Angewandte Chemie*, 2018, 130, 10299-10304.
- 11. Y. Liu, D. Lee, D. Wu, K. Swamy, J. Yoon, A new kind of rhodamine-based fluorescence turn-on probe for monitoring ATP in mitochondria, *Sensors and Actuators B: Chemical*, 2018, **265**, 429-434.
- 12. X. Zhang, Y. Jiang, N. Xiao, Monitoring ADP and ATP in vivo using a fluorescent Ga (III)-probe complex, *Chemical Communications*, 2018, **54**, 12812-12815.
- 13. K.-Y. Tan, C.-Y. Li, Y.-F. Li, J. Fei, B. Yang, Y.-J. Fu, F. Li, Real-time monitoring ATP in mitochondrion of living cells: a specific fluorescent probe for ATP by dual recognition sites, *Analytical chemistry*, 2017, **89**, 1749-1756.
- C. Patra, C. Sen, A.D. Mahapatra, D. Chattopadhyay, A. Mahapatra, C. Sinha, Pyridylthioetherhydroxycoumarin Schiff base as selective Zn²⁺ fluorescence sensor, application in life cell imaging and uses of resulting complex as a secondary probe for ATP sensing, *Journal of Photochemistry* and Photobiology A: Chemistry, 2017, **341**, 97-107.
- D. de la Fuente-Herreruela, V. Gónzalez-Charro, V.G. Almendro-Vedia, M. Morán, M.Á. Martín, M.P. Lillo, P. Natale, I. López-Montero, Rhodamine-based sensor for real-time imaging of

mitochondrial ATP in living fibroblasts, *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 2017, **1858**, 999-1006.

- 16. A. K. Gupta, A. Dhir, C. P. Pradeep, Ratiometric Detection of Adenosine-5'-triphosphate (ATP) and Cytidine-5'-triphosphate (CTP) with a Fluorescent Spider-Like Receptor in Water, *Eur. J. Org. Chem.*, 2015, **1**, 122–129.
- 17. L. Tang, C.-Y. Li, Y.-F. Li, C.-X. Zou, A ratiometric fluorescent probe with unexpected high selectivity for ATP and its application in cell imaging, *Chemical Communications*, 2014, **50**, 15411-15414.
- 18. Xi Juan Zhao, Rong Xing He, Yuan Fang Li, A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate, *Analyst*, 2012, **137**, 5190–5192.
- 19. A.S. Rao, D. Kim, H. Nam, H. Jo, K.H. Kim, C. Ban, K.H. Ahn, A turn-on two-photon fluorescent probe for ATP and ADP, *Chemical Communications*, 2012, **48**, 3206-3208.
- 20. Y. Kanekiyo, R. Naganawa, H. Tao, Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation, *Chemical communications*, 2004, 1006-1007.