Supporting Information

A signal-on electrochemical DNA biosensor based on exonuclease

III-assisted recycling amplification

Xiongtao Yu^a, Bowen Jiang^b and Lishi Wang^a*

^aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
^bCollege of Biophotonics, South China Normal University, Guangzhou

510631, China

*Corresponding Authors: E-mail: wanglsh@scut.edu.cn

Feasibility validation

In order to verify the feasibility of the sensor using Exo III-assisted signal amplification, we evaluated the conformations and molecular hybridization of pDNA and cDNA oligonucleotides using the NUPACK web server. The evaluation result showed that pDNA forms a stable hairpin structure in solution and the free energy of the secondary structure (E_{free}) was -9.92 kcal/mol (Fig.S1A). pDNA hybridize with tDNA to form a more stable double-stranded structure with free energy (E_{free}) was -22.02 kcal/mol, while Exo III could cleave its blunt 3 ' terminus (Fig. S1B). However, pDNA and cDNA cannot hybridize because they have the same number of base pairings. Alternatively, the remaining DNA and cDNA hybridize to form a stable double-stranded structure with free energy (E_{free}) was -13.52 kcal/mol (Fig. S1C), which can facilitate successful anchoring of methylene blue at the electrode.

Free energy of secondary structure: -9.92 kcal/mol Free energy of secondary structure: -22.02 kcal/mol Free energy of secondary structure: -13.52 kcal/mol

Fig. S1. The conformation and secondary structure free energy of oligonucleotide sequences were evaluated by NUPACK analysis : (A) pDNA; (B) pDNA+tDNA; (C) rDNA+ cDNA.

Polyacrylamide Gel Electrophoresis

Electrophoresis experiment was performed by referencing the standard protocol to prove the target DNA -triggered digestion of probe DNA by Exo-III. PAGE (12%) in the $1 \times \text{TBE}$ buffer for 80 min under a voltage of 100 V was used to test different samples. The results showed that the Exo III was able to specifically cleave the target/probe DNA duplex with 3' blunt end.

Fig. S2. The image of polyacrylamide gel electrophoresis of Exo III-assisted signal amplification. lane 1: 20 bp DNA ladder; lane 2: pDNA; lane 3: pDNA + tDNA; lane 4: pDNA + cDNA; lane 5: pDNA + Exo; lane 6: pDNA + cDNA + Exo III; lane 7: pDNA + tDNA + Exo III; Gel Red nucleic acid stain used in the experiment.

			1
Amplification strategy	Signal change ratio of mismatched DNA to		Reference
	T-DNA		
	Sm-DNA (%)	Tm-DNA (%)	
Exo III T-AuNSs	45	-	1
Exo III and HCR	60	20	2
Exo III	69	33	3
eMB-DNA	49	26	4
AuNPs/g-C3N4@rGO	33	20	5
biotin-streptavidin			
CDs and GO	41	-	6
AuNPs	62	51	7
Exo III and AuNPs	43	10	This work

Table S1. Comparison of different methods for specificity

Exo-III: Exonuclease III; HCR: hybridization chain reaction; eMB-DNA:

electrochemical molecular beacon-based DNA; AuNPs: gold nanoparticles; g-C3N4:

graphitic carbon nitride; rGO: reduced graphene oxide; T-AuNSs: triangular Au nanosheets; CDs: carbon dots; GO: graphene oxide;

- Zheng, X.; Li, L.; Zhang, L.; Xie, L.; Song, X.; Yu, J., Multiple self-cleaning paper-based electrochemical ratiometric biosensor based on the inner reference probe and exonuclease III-assisted signal amplification strategy. *Biosens Bioelectron* 2020, 147, 111769.
- Ren, W.; Gao, Z. F.; Li, N. B.; Luo, H. Q., Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification. *Biosens Bioelectron* 2015, *63*, 153-158.
- Lin, C.; Wu, Y.; Luo, F.; Chen, D.; Chen, X., A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease IIIaided target recycling strategy. *Biosens Bioelectron* 2014, *59*, 365-9.
- Xiong, E.; Li, Z.; Zhang, X.; Zhou, J.; Yan, X.; Liu, Y.; Chen, J., Triple-Helix Molecular Switch Electrochemical Ratiometric Biosensor for Ultrasensitive Detection of Nucleic Acids. *Anal Chem* 2017, *89* (17), 8830-8835.
- Zhu, Q.; Yang, H.; Luo, J.; Huang, H.; Fang, L.; Deng, J.; Li, C.; Li, Y.; Zeng, T.; Zheng, J., 3D matrixed DNA self-nanocatalyzer as electrochemical sensitizers for ultrasensitive investigation of DNA 5-methylcytosine. *Analytica Chimica Acta* 2021, *1142*, 127-134.
- 6. Zhang, Z.-Y.; Huang, L.-X.; Xu, Z.-W.; Wang, P.; Lei, Y.; Liu, A.-L., Efficient Determination of PML/RAR alpha Fusion Gene by the Electrochemical DNA Biosensor Based on Carbon Dots/Graphene Oxide Nanocomposites. *International Journal of Nanomedicine* 2021, *16*, 3497-3508.
- Zhan, F.; Liao, X.; Wang, Q.; Sun, W., A subfemtomolar electrochemical DNA biosensor realized by in-situ grafting of gold nanoparticle/neutral red on the terminal of hairpin probe as the signal tag. *Microchemical Journal* 2021, *164*.