SUPPLEMENTARY MATERIAL

Determination of hydroquinone and benzoquinone in pharmaceutical formulations: critical considerations on quantitative analysis of easily oxidized compounds

Olívia Brito de Oliveira Moreira ${ }^{\text {a }}$, Lucas Vinicius de Faria ${ }^{\text {a }}$, Renato Camargo Matos ${ }^{\text {a }}$, Karine Braga Enes ${ }^{\text {a }}$, Mara Rúbia Costa Curi ${ }^{\text {a }}$, Marcone Augusto Leal de Oliveira ${ }^{\text {a,b }}$.
${ }^{a}$ Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
${ }^{b}$ National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil

Corresponding author: marcone.oliveira@ufjf.br

1. Solid-state NMR

Fig. 1S. Solid-state ${ }^{13} \mathrm{C}$ NMR of the hydroquinone standard material.

Fig. 2S. Solid-state ${ }^{13} \mathrm{C}$ NMR of the benzoquinone standard material.
2. FT-IR and Raman

Fig. 3S. FT-IR and Raman spectra of (a) HQ and (b) BQ. Experimental conditions FTIR: 54 scans with $4 \mathrm{~cm}^{-1}$ of resolution; Raman: 10 mW of power, 512 scans with $4 \mathrm{~cm}^{-1}$ of resolution.

Table 1S. Characterization of vibrational spectra of HQ and BQ for both FT-IR and

Bond type	Hydroquinone		Benzoquinone	
	IR	RAMAN	IR	RAMAN
$\nu(\mathrm{O}-\mathrm{H})$	3199	-	-	-
$\nu(\mathrm{C}-\mathrm{H})$	3027	3066	3052	3054
$v(\mathrm{C}=\mathrm{O})$	-	-	1662	1683
$\nu(\mathrm{C}=\mathrm{C})$	1529	1590	1302	1389
$\delta(\mathrm{O}-\mathrm{H})$	1465	-	-	-
$\nu(\mathrm{C}-\mathrm{O})$	1189	1227	-	-
$\beta(\mathrm{C}-\mathrm{H})$	1094	1168	-	-
$\gamma(\mathrm{C}-\mathrm{H})$	825	856	885	781
$\tau(\mathrm{O}-\mathrm{H})$	606	-	-	-
$\beta(\mathrm{C}=\mathrm{O})$	-	-	422	437

Raman scattering
$\nu=$ stretching; $\delta=$ in-plane symmetric deformation; $\beta=$ in-plane asymmetric deformation; $\gamma=$ out-of-plane bending $\tau=$ out-of-plane bending (twisting).
3. NMR of $H Q$ and $B Q$ deuterated solutions

Fig 4S. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of hydroquinone in DMSO- d_{6}.

Fig $5 \mathrm{~S} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of benzoquinone in DMSO- d_{6}.

Fig 6S. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of hydroquinone in DMSO- d_{6} after a week from the preparation date.

Fig 7S. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of benzoquinone original tube in DMSO- d_{6} after a week from the preparation date.

4. Raman scattering of samples and standards

Fig 8S. Comparative analysis of Raman Scattering spectra of a HQ-based pharmaceutical sample, the sample matrix, HQ and BQ standard crystals. Power of excitation source: 10 mW for HQ and $\mathrm{BQ}, 100 \mathrm{~mW}$ for sample and matrix. 512 scans. $4 \mathrm{~cm}^{-1}$ resolution.

5. $\mathrm{E}(\mathrm{V})$ vs pH curves

Fig 9S. $\mathrm{E}(\mathrm{V}) v s \mathrm{pH}$ curve of (A) HQ oxidation peak potentials and (B) BQ reduction peak potentials.

6. Distribution diagram

Fig. 10S. Distribution diagram of $\mathrm{HQ} / \mathrm{BQ}$ along the pH scale.
7. Visual indicatives of hydroquinone oxidation

Fig.11S. Modification on the color of aqueous solution of HQ according to the pH scale.

8. Micellar Electrokinetic Chromatography (MEKC) experiments

Fig 12S. Electropherograms of $10 \mathrm{mmol} \mathrm{L} \mathrm{L}^{-1} \mathrm{HQ}$ in water/methanol (9:1, v/v). Electrophoretic conditions: $25^{\circ} \mathrm{C},+20 \mathrm{kV}$, hydrodynamic injection: 50 mbar for 5 s , detection at 287 nm (A) and $248 \mathrm{~nm}(\mathbf{B}) .48 .5 \mathrm{~cm}$ (40 cm effective length) and $75 \mu \mathrm{~m}$ i.d. capillary. BGE: $20 \mathrm{mmol} \mathrm{L}^{-1}$ Tris/Phosphate buffer (pH 7.5), $40 \mathrm{mmol}^{-1}$ SDS and 10% (v / v) acetonitrile. UV spectra was acquired by the DAD detector.

The expected for a MEKC analysis of HQ were a single peak associated to the HQ UV spectrum. However, since the experiment was set up to run in both HQ and BQ maximum wavelengths (287 and 248 nm respectively), it had allowed us to notice an indicative of oxidation, once the UV spectrum acquired in 248 nm is characteristic of the BQ structure.

9. Determination of diffusion coefficient (D)

The active area of the glassy carbon working electrode used in all experiments was calculated from a solution of known diffusion coefficient, and in this case we selected potassium ferricyanide probe $\left(\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right)$ as the model molecule. Subsequently an aliquot of $1 \mathrm{mmol}^{-1}$ of the probe was added to the electrochemical cell containing KCl $100 \mathrm{mmoL}^{-1}$ as the supporting electrolyte and CV measurements under the potential range of -0.2 to 0.7 V using scan rate ranging from 25 to $300 \mathrm{mV} \mathrm{s}^{-1}$ were performed.

With the data collected from the resulting voltammograms, the linear regression that relates current $i_{p}(\mu \mathrm{~A})$ and $v^{1 / 2}\left(\mathrm{Vs}^{-1}\right)$ was calculated so the slope along with the other parameters related to Fe (III) would be used in the Randles-Sevcik equation to finally get the electrode area. Following this protocol, a value of $0.060 \mathrm{~cm}^{2}$ was found.
$i_{p}(\mu \mathrm{~A})$ versus $v^{1 / 2}$ linear regression was prepared using both HQ and BQ solutions. The analysis followed the same protocol above mentioned. The standard solutions were individually added to the electrochemical cell containing BR buffer at pH 7 and CV measurements under the potential range of $(-0.7 \mathrm{~V}$ to 0.9 V for HQ and 0.9 V to -0.7 V for BQ) using scan rate ranging from 25 to $300 \mathrm{mV} \mathrm{s}^{-1}$ were carried out. The individually calculated slopes of $i_{p}(\mu \mathrm{~A})$ versus $v^{1 / 2}\left(\mathrm{Vs}^{-1}\right)$ equation together with the working electrode area previously calculated were finally used to calculate the diffusion coefficient of each analyte also through the Randles-Sevcik equation.

10. Chronoamperometric analysis of benzoquinone: limit of detection

Fig 13S. Chronoamperometric analysis of addition of benzoquinone aliquots to a hydroquinone solution. Supporting electrolyte: BR buffer ($0.04 \mathrm{~mol} \mathrm{~L}^{-1}, \mathrm{pH} 5.5$). Glassy-carbon working electrode, $\mathrm{Ag} / \mathrm{AgCl}_{\text {(sat) }}$ reference electrode and platinum auxiliary electrode. Potential applied: 0.1 V .

11. Optimization of extraction solvent for sample preparation

Table 2S. Comparative evaluation of hydroquinone assay results in dermatological gel in samples prepared with and without the addition of 10% methanol.

Diluent A: BR buffer (pH 5.5)		Diluent B: BR buffer (pH 5.5) and methanol ($9: 1, v / v$)	
[HQ] (\%, w/w)	2.91	[HQ] (\%, w/w)	3.81 \%
RSD (\%)	2.09	RSD	0.21 \%

12. Selectivity test

Fig 14S. Selectivity test carried out by the optimized chronoamperometric method. Supporting electrolyte: BR buffer ($0.04 \mathrm{~mol} \mathrm{~L}^{-1}, \mathrm{pH} 5.5$). Glassy-carbon working electrode, $\mathrm{Ag} / \mathrm{AgCl}_{(\text {(sat) }}$ reference electrode and platinum auxiliary electrode. Potential applied: 0.4 V . Scan rate: $100 \mathrm{mVs}^{-}$ ${ }^{1}$.

13. Oxidation traceability of the HQ pharmaceutical sample

Fig 15S. Chronoamperogram resulting from the application of reduction potential on the dermatological gel sample containing hydroquinone. Supporting electrolyte: BR buffer (0.04 mol $\mathrm{L}^{-1}, \mathrm{pH} 5.5$). Glassy-carbon working electrode, $\mathrm{Ag} / \mathrm{AgCl}_{\text {(sat) }}$ reference electrode and platinum auxiliary electrode. Potential applied: -0.1 V .

