Supporting Information

Regulating the activity of boronate moiety to construct fluorescent probes for detection of ONOO⁻ *in vitro* and *in vivo*

Xin Ji,^a Junliang Zhou,^a Chang Liu,^a Jian Zhang,^b Xiaochun Dong,*^a Fuli Zhang*^c and Weili Zhao*^{a,b}

^a School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
^b Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
^c Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P. R. China.

*Corresponding Authors E-mail: xcdong@fudan.edu.cn; zhangfuli1@sinopharm.com; zhaoweili@fudan.edu.cn

Table of contents

Apparatus and reagents	S2
Supplementary schemes	
Synthetic method	
Generation of various ROS and RNS species	
Cell incubation	
LPS-induced inflammation in mice.	
Supplementary optical spectra	S10
Supplementary table	S14
Copies of NMR spectroscopic data	S16
References	

Apparatus and reagents

All reagents were purchased from commercial suppliers and used without further purification. DMSO in chromatographic purity was used in detection. Anhydrous solvents were acquired by standard methods prior to use. TLC analysis was performed on silica gel plates GF254 and chromatography was carried out on 200–300 mesh silica gel (Qingdao Haiyang Chemical, China). ¹H NMR spectra were recorded on a Varian Model Mercury 600 MHz spectrometer. ¹H NMR chemical shifts (δ) are given in ppm (s = singlet, d = doublet, t= triplet, q = quartet, m = multiplet) downfield from Me₄Si. ¹³C NMR spectra were recorded on a Varian Model Mercury 600 MHz spectrometer. Spectrometer UV-vis spectra were acquired on a Lengguang 759S UV-visible spectrophotometer (Lengguang Tech, China). Electrospray ionization (ESI) mass spectra were acquired with Agilent 1100Series LC/MSD and AB SCIEX Triple TOFTM 5600+ mass spectrometer. HRMS (high resolution mass spectrometry, DART positive) spectra were obtained on Thermo Fisher Scientific LTQ FT Ultra. All spectra were recorded at room temperature, except for the confocal laser scanning microscopic images.

Supplementary schemes

Scheme S1 Examples of fluorescent probes containing arylboronic acid pinacol ester for ONOO-.

Scheme S2 Examples of fluorescent probes containing arylboronic acid pinacol ester for H₂O₂.

Scheme S3 Examples of fluorescent probes containing arylboronic acid pinacol ester for ONOO^- and/or $\rm H_2O_2$

Synthetic method

Ar = arylboronic acid pinacol ester

Scheme S4. A general pathway for the synthesis of probes.

The borate ester derivatives were synthesized according to the procedure reported.^{1,2}

General procedure for the probes' synthesis: Resorufin (106 mg, 0.5 mmol) was dissolved in DMF (5 mL), and arylboronic acid pinacolate self-eliminating linker (0.6 mmol) and K_2CO_3 (138 mg, 1 mmol) were added. The reaction mixture was purged with nitrogen and stirred at room temperature for 30 min. The crude mixture was poured out in dichloromethane, washed with aqueous Na₂CO₃, and the organic layer was evaporated to dryness. The product was obtained after filtration over silica gel column chromatography.

p-Borate: Orange solid; yield: 68%; ¹H NMR (600 MHz, CDCl₃) δ = 7.85 (d, *J* = 7.9 Hz, 2H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 2H), 7.40 (s, 1H), 7.00 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.89 – 6.73 (m, 2H), 6.31 (d, *J* = 1.9 Hz, 1H), 5.20 (s, 2H), 1.34 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 186.32, 162.59, 149.81, 145.71, 145.59, 138.46, 135.27, 134.71, 134.26, 131.61, 128.51, 126.53, 114.32, 106.77, 101.16, 83.97, 70.77, 24.88 ppm; MS(ESI): Calculated for C₂₅H₂₄BNO₅ [M+H]⁺: 430.2, measured: 430.2; HRMS (ESI): Calculated for [M+H]⁺: 430.1856, measured: 430.1854.

o-Borate: Orange solid; yield: 63%; ¹H NMR (600 MHz, CDCl₃) δ = 7.91 (d, *J* = 7.3 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.43 (d, *J* = 9.8 Hz, 1H), 7.37 (ddd, *J* = 7.5, 5.2, 3.5 Hz, 1H), 7.01 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.94 (d, *J* = 2.6 Hz, 1H), 6.84 (dd, *J* = 9.8, 2.0 Hz, 1H), 6.33 (d, *J* = 2.0 Hz, 1H), 5.46 (s, 2H), 1.29 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 186.31, 163.32, 149.94, 145.71, 145.36, 141.58, 136.45, 134.70, 134.13, 131.48, 131.39, 128.33, 128.01, 127.77, 114.54, 106.66, 100.92, 83.92, 70.55, 24.89 ppm; MS(ESI): Calculated for C₂₅H₂₄BNO₅ [M+H]⁺: 430.2, measured: 430.1; HRMS(ESI): calculated for [M+H]⁺: 430.1856, measured: 430.1834.

m-Borate: Orange solid; yield: 54%; ¹H NMR (600 MHz, CDCl₃) δ = 7.88 (s, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.01 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.83 (d, *J* = 9.8 Hz, 1H), 6.32 (s, 1H), 5.16 (s, 2H) 1.36 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 186.32, 162.72, 149.83, 145.65, 135.02, 134.69, 134.24, 133.97, 131.59, 130.50, 128.48, 128.27, 114.28, 106.74, 101.04, 84.04, 70.92, 24.88 ppm; MS(ESI): Calculated for C₂₅H₂₄BNO₅ [M+H]⁺: 430.2, measured: 430.2; HRMS(ESI): Calculated for [M+H]⁺: 430.1856, measured: 430.1845

p-Borate-*o*-OMe: Orange solid; yield: 33%; ¹H NMR (600 MHz, CDCl₃) δ = 7.70 (d, *J* = 8.9 Hz, 1H), 7.44 (dd, *J* = 12.5, 5.3 Hz, 2H), 7.42 (s, 1H), 7.35 (s, 1H), 7.03 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.90 (d, *J* = 2.6 Hz, 1H), 6.84 (dd, *J* = 9.8, 2.0 Hz, 1H), 6.32 (d, *J* = 5.5 Hz, 1H), 5.26 (s, 2H), 3.95 (s, 3H), 1.36 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 185.71, 162.32, 155.54, 149.26, 145.03, 144.86, 134.07, 133.55, 130.91, 127.82, 126.99, 126.78, 126.31, 115.23, 113.85, 106.06, 100.43, 83.37, 65.37, 54.94, 24.24 ppm; MS(ESI): Calculated for C₂₆H₂₆BNO₆ [M+H]⁺: 460.2, measured: 460.2; HRMS(ESI): Calculated for [M+H]⁺: 460.1926, measured: 460.1922.

p-Borate-*m*-OMe: Orange solid; yield: 36%; ¹H NMR (600 MHz, CDCl₃) δ = 7.71 (s, 1H), 7.69 (d, *J* = 2.2 Hz, 1H), 7.42 (d, *J* = 9.8 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.91 (s, 1H), 6.86 – 6.81 (m, 1H), 6.32 (d, *J* = 1.8 Hz, 1H), 5.18 (s, 1H), 3.85 (s, 1H), 1.35 (s, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 186.69, 164.97, 162.90, 150.16, 146.11, 145.93, 140.40, 137.60, 135.06, 134.64, 131.95, 128.88, 119.23, 114.66, 109.38, 107.14, 101.58, 83.98, 71.18, 56.26, 25.17.ppm; MS(ESI): Calculated for C₂₆H₂₆BNO₆ [M+H]⁺: 460.2, measured: 460.2; HRMS(ESI): Calculated for [M+H]⁺: 460.1926, measured: 460.1922.

p-Borate-*o*-F: Orange solid; yield: 48%; ¹H NMR (600 MHz, CDCl₃) δ = 7.71 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 10.2 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 9.8 Hz, 1H), 7.01 (d, *J* = 8.9 Hz, 1H), 6.89 (s, 1H), 6.83 (d, *J* = 9.8 Hz, 1H), 6.32 (s, 1H), 5.26 (s, 1H), 1.34 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 186.49, 162.44, 161.03, 159.39, 149.94, 146.00, 145.75, 134.86, 134.47, 131.80, 130.85, 129.01, 128.76, 121.45, 121.33, 114.26, 106.97, 101.25, 84.42, 64.71, 25.00 ppm; MS(ESI): Calculated for C₂₅H₂₃BFNO₅ [M+H]⁺: 448.2, measured: 448.1; HRMS(ESI): Calculated for [M+H]⁺: 448.1762, measured: 448.1720.

p-Borate-*m*-F: Orange solid; yield: 59%; ¹H NMR (600 MHz, CDCl₃) δ = 7.78 (t, *J* = 6.8 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.42 (d, *J* = 9.8 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.12 (d, *J* = 9.5 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.83 (d, *J* = 9.3 Hz, 2H), 6.32 (s, 1H), 5.19 (s, 2H), 1.36 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 185.67, 167.63, 165.96, 161.56, 149.13, 145.31, 144.94, 140.82, 136.81, 134.09, 133.71, 131.04, 128.00, 121.39, 113.52, 106.20, 100.58, 83.44, 69.21, 24.19 ppm; MS(ESI): Calculated for C₂₅H₂₃BFNO₅ [M+H]⁺: 448.2, measured: 448.1; HRMS(ESI): Calculated for [M+H]⁺: 448.1762, measured: 448.1720.

o-Borate-*m*-F: Orange solid; yield: 43%; ¹H NMR (600 MHz, CDCl₃) δ = 7.93 (dd, J = 8.1, 6.6 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.45 (d, J = 9.8 Hz, 1H), 7.25 (dd, J = 10.0, 2.2 Hz, 1H), 7.05 (ddd, J = 11.4, 8.6, 2.4 Hz, 2H), 6.94 (d, J = 2.5 Hz, 1H), 6.86 (dd, J = 9.8, 1.9 Hz, 1H), 6.35 (d, J = 1.9 Hz, 1H), 5.49 (s, 2H), 1.33 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 185.66, 165.27, 163.60, 162.20, 149.24, 145.05, 144.54, 138.23, 138.17, 134.08, 133.59, 130.94, 127.83, 114.02, 113.92, 113.76, 106.09, 100.38, 83.42, 69.00, 24.27 ppm; MS(ESI): Calculated for C₂₅H₂₃BFNO₅ [M+H]⁺: 448.2, measured: 448.2; HRMS(ESI): Calculated for [M+H]⁺: 448.1762, measured: 448.1720.

o-Borate-*m*-NO₂: Orange solid; yield: 48%; ¹H NMR (600 MHz, CDCl₃) δ = 8.37 (s, 1H), 8.18 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.75 (dd, *J* = 8.8, 5.9 Hz, 1H), 7.43 (dd, *J* = 9.7, 3.5 Hz, 1H), 7.06 – 7.02 (m, 1H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.84 (dd, *J* = 9.8, 1.7 Hz, 1H), 6.33 (d, *J* = 1.7 Hz, 1H), 5.51 (s, 2H), 1.34 (s, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 185.65, 161.76, 149.31, 149.17,

145.27, 145.01, 143.27, 136.85, 134.10, 133.70, 132.45, 131.06, 129.27, 127.98, 121.39, 113.59, 106.19, 100.36, 84.17, 68.65, 24.28 ppm; MS(ESI): Calculated for $C_{25}H_{23}BN_2O_7$ [M+H]⁺: 475.1, measured: 475.2; HRMS(ESI): Calculated for [M+H]⁺: 475.1671, measured: 475.1668.

Generation of various ROS species

All analytes involved were prepared according to the related literature, and concentrations of analytes were determined by measuring their absorption or diluting them. ^{3–6}

ONOO⁻: To a vigorously stirred solution of NaNO₂ (0.6 M, 10 mL) and H₂O₂ (0.7 M, 10 mL) in deionized H₂O at 0 °C was added HCl (0.6 M, 10 mL), immediately followed by the rapid addition of NaOH (1.5 M, 20 mL). Excess hydrogen peroxide was removed by passing the solution through a short column of MnO₂. The concentration of ONOO⁻ was determined by UV analysis with the extinction coefficient at 302 nm ($\varepsilon = 1670 \text{ M}^{-1} \text{ cm}^{-1}$) in 0.1 M NaOH. Aliquots of the solution were stored at – 20 °C for use.

 H_2O_2 : H_2O_2 solution was prepared by diluting commercial H_2O_2 solutions with PBS (10 mM, pH 7.4) to make 10 mM stock solutions. The concentration of H_2O_2 was determined by UV analysis with the extinction coefficient at 240 nm ($\epsilon = 39.4 \text{ M}^{-1} \text{ cm}^{-1}$) in water.

 1 O₂: NaMoO₄ (10 mM) and H₂O₂ (10 mM) was prepared in PBS (10 mM, pH 7.4). Equal aliquots of these solutions were then mixed to yield 1 O₂ of 5 mM.

CIO⁻: CIO⁻ solution was prepared by diluting commercial NaClO solutions with PBS (10 mM, pH 7.4) to make 10 mM stock solutions. The concentration of CIO⁻ was determined by UV analysis with the extinction coefficient at 292 nm ($\varepsilon = 350 \text{ M}^{-1} \text{ cm}^{-1}$) in 0.1 M NaOH.

 O_2^{-} : O_2^{-} (100 µM) also can be generated from enzymatic reaction of xanthine (300 µM) and xanthine oxidase (0.01 U/mL).

•OH: •OH was generated by Fenton reaction. To a solution of H_2O_2 (1.0 mM, 1.0 mL) in PBS (10 mM, pH 7.4) was added FeSO₄ solution (1.0 mM, 100 µL) at ambient temperature (stock solution 0.1 mM).

ROO•: ROO• was generated from 2, 2'-azobis(2-amidinopropane)dihydrochloride, which was dissolved in PBS (10 mM, pH 7.4) 1 h before use to make a stock solution of 10 mM.

Cell incubation

Cell culture. Raw 264.7 cells, HepG2 cells and HeLa cells were cultured in Dulbecco's Modified Eagle Medium supplemented with 10% FBS at 37 °C in a humidified 5% CO₂ atmosphere, and the culture medium was refreshed every day. The cells were seeded in glass bottom cell culture dishes (Nest, New Jersey, USA) at a density of 4.5×10^4 cells per well and divided into 3 batches. Culture medium was removed and the cells were incubated with different substances at 37 °C. All the batches were rinsed three times with PBS buffer, and then imaged under the Laser Scanning Confocal Microscopy (LSCM, Carl Zeiss LSM710, Zeiss, Jena, Germany).

Toxicity determination. CCK-8 experiment was performed in 96-well plate to assess the cytotoxicity of *p*-Borate. The CCK-8 assay in cells with probe concentrations from 0 to 10 μ M was in comparison with the blank and negative control. Cells were plated on cell plates at 4 × 10³ cells per well and allowed to incubate for 24 h. *p*-Borate in various concentrations was added to the well and

incubated for 24 h followed by classical CCK-8 treatment and data acquiring.

A stock solution of probe (1 mM) was prepared in DMSO and working solution was diluted to desired concentration in Dulbecco's Modified Eagle Medium supplemented with 10% FBS.

Exogenous ONOO⁻ imaging experiments in live cells. The HepG2 cells were incubated with *p*-**Borate** (10 μ M) for 20 min, followed by treated with SIN-1 (10 μ L, 10 mM) for 0, 2, 4, 6, 8, 10, 12 minute. Confocal microscopy imaging was carried out after washing the cells with PBS for three times.

Endogenous ONOO⁻ imaging experiments in live cells. The Raw 264.7 cells were incubated with bacterial products lipopolysaccharide (LPS, bacterial endotoxin, 1 µg/mL) and gamma interferon (IFN- γ , pro-inflammatory cytokine, 50 ng/mL) for 12 h, and then were incubated with *p*-Borate (10 µM) for another 20 min at 37 °C. Confocal microscopy imaging was carried out after washing the cells with PBS for three times.

LPS-induced inflammation in mice.

Animal experiments involving mice were conducted in Fudan University's Experimental Animal Centre in compliance with ethical guidelines. A stock solution of probe (1 mM) was prepared in DMSO and working solution was diluted to desired concentration in PBS buffer. LPS (200 μ L, 1 mg/mL) was injected into the tibiotarsal joints of 6–8 week-old nude mice to induce acute inflammation. The tibiotarsal joints of mouse were divided into two groups. (I) LPS (200 μ L, 1 mg/mL) was injected into the left tibiotarsal joints of the mice. (II) PBS (200 μ L) was injected into the right tibiotarsal joints of the mouse. 12 hours later, probe (10 μ M) was injected into region I and II.

Figure S1. Absorption (solid line) and fluorescence (dashed line, $\lambda_{ex} = 560$ nm, slit: 2/5 nm) spectra of probes ((a) *m*-Borate, (b) *p*-Borate-*o*-F, (c) *p*-Borate-*m*-F, (c) *p*-Borate-*o*-OMe, (d) *p*-Borate-*m*-OMe, (e) *o*-Borate-*m*-F and (f) *o*-Borate-*m*-NO₂ 10 μ M, black curve) prior to and after treatment with 100 μ M of ONOO⁻ (red curve) for 10 min, respectively. Conditions: PBS buffer, 10 mM, pH 7.4, containing 20% MeCN, 25 °C.

Figure S2. MS spectra of fluorescent *p*-Borate prior to and after addition of $ONOO^-$ for 10 min, respectively.

Figure S3. MS spectra of fluorescent *o*-Borate prior to and after addition of ONOO⁻ for 10 min, respectively.

Figure S4. MS spectra of fluorescent *m*-Borate prior to and after addition of ONOO⁻ for 10 min, respectively.

Figure S5. The fluorescent intensities of *p*-Borate (10 μ M) prior to and after addition of 100 μ M of ONOO⁻ at various pH values for 10 min incubation at 25 °C (λ_{ex} , $\lambda_{em} = 560/590$ nm, slit: 2/5 nm).

Figure S6. Cytotoxicity assays of *p*-Borate in living Raw 264.7 cells and HepG2 cells.

Figure S7. Confocal lasing scanning microscopy and red channel images of HepG2 cells. (a) Fluorescence image of HepG2 cells treated with *p*-Borate (10 μ M) for 20 min at 37 °C, and then incubated with SIN-1 (1 mM) for 0 min, 2 min, 4 min, 8 min, 10 min and 12 min. (b) Relative pixel intensity of the corresponding fluorescence images. Scale: 20 μ m.

Figure S8. Confocal lasing scanning microscopy and red channel images of Raw 264.7 cells under various treatments. (a) Fluorescence image of Raw 264.7 cells treated with *p*-Borate (10 μ M) for 20 min at 37 °C. (b) Fluorescence image of Raw 264.7 cells pretreated with LPS (1 μ g·mL⁻¹) and IFN- γ (50 ng·mL⁻¹) for 12 h and then incubated with *p*-Borate (10 μ M, 20 min). (c) Fluorescence image of Raw 264.7 cells pretreated with LPS (1 μ g·mL⁻¹) and IFN- γ (50 ng·mL⁻¹) for 12 h and then incubated with *p*-Borate (10 μ M, 20 min). (c) Fluorescence image of Raw 264.7 cells pretreated with NOS inhibitor L-NAME (3 mM, 12 h) during stimulation with LPS (1 μ g·mL⁻¹) and IFN- γ (50 ng·mL⁻¹) for 12 h, subsequently incubated with probe *p*-Borate (10 μ M, 20 min). Scale: 50 μ m.

Supplementary table

No.	Sensors	Analytes	Solution system	Saturation Time	Ref.	
1		150 U mL ⁻¹ tyrosinase	PBS buffer (2% DMSO)	10 h	Anal. Chem., 2018, 90, 855–858	
2	of to to the second sec	1000 eq. H2O2	PBS buffer	12 min	Chem. – Eur. J., 2015, 21, 15167 – 15172	
3	of of of of book	10 eq. H2O2	PBS buffer 1% DMSO	2 h	<i>Dyes Pigm.</i> , 2021, 193, 109499	
4		10 eq. BPO	PBS buffer 10% EtOH	10 min	Chem. Commun., 2012,48, 2809-2811	
5	$R^{=} \xrightarrow{\gamma^{i}}_{0} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	50 eq. H ₂ O ₂	PBS buffer 10% DMSO	1 h	Chem. Asian J., 2017, 12, 2656 – 2659	

Table S1 Photophysical properties of the synthesized probes

Probes	$\lambda_{abs}/\lambda_{fl} (nm)^{a, c}$	$\lambda_{abs}/\lambda_{fl} (nm) = 0$	ε (10 ⁴ M ⁻¹ cm ⁻¹) ^{a, c,}	t (ONOO ⁻) ^a	$\Phi_{\mathrm{fl}}{}^{\mathrm{a}}$
<i>p</i> -Borate	470/- ^b	572/590	1.9	1 min	0.0075
<i>m</i> -Borate	472/- ь	477/- ь	2.1	_ b	0.0055
o-Borate	477/- ^b	572/590	2.1	<20 s	0.0051
<i>p</i> -Borate- <i>o</i> -F	473/- ^b	572/590	1.9	3 min	0.0069
<i>p</i> -Borate- <i>m</i> -F	476/- ^b	572/590	1.9	10 min	0.0061
<i>p</i> -Borate- <i>o</i> -OMe	477/- ^b	572/590	2.1	<20 s	0.0073
p-Borate-m-OMe	474/- ^b	572/590	2.1	1 min	0.0060
o-Borate-m-F	473/- ^b	572/590	2.1	1 min	0.0051
o-Borate-m-NO ₂	473/- ^b	572/590	2.0	>10 min	0.0050

Table S2 Photophysical properties of the synthesized probes

^a Measured in 10 mM of PBS buffer (pH 7.4, 20% CH₃CN). ^b Undetectable. Wavelength changes of probe prior to^c and after treatment with^d ONOO⁻ for 10 min, respectively. ^e Φ_{fl} is the relative fluorescence quantum yield estimated by using **Resorufin** ($\Phi_{fl} = 0.63$ in alcohol) as a fluorescence standard ⁷.

Copies of NMR spectroscopic data

Figure S10: ¹³C NMR (150 MHz, CDCl₃) spectrum of *p*-Borate.

Figure S18: ¹³C NMR (150 MHz, CDCl₃) spectrum of *p*-Borate-*m*-F.

Figure S24: ¹³C NMR (150 MHz, CDCl₃) spectrum of *o*-Borate-*m*-F.

Figure S26: ¹³C NMR (150 MHz, CDCl₃) spectrum of *o*-Borate-*m*-NO₂.

References

[1] By Klaubert, Dieter et al From PCT Int. Appl., 2013025885, 21 Feb 2013.

[2] S. Cao, R. Christiansen, X. Peng, Chem. - Eur. J., 2013, 19, 9050-9058.

[3] A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, *Free Radical Bio. Med.*, 2009, 47, 1401–1407.

[4] J. Zielonka, R. Podsiadły, M. Zielonka, M. Hardy, B. Kalyanaraman, *Free Radical Bio. Med.*, 2016, **99**, 32–42.

[5] X. Li, R.R. Tao, L.J. Hong, J. Cheng, Q. Jiang, Y.M. Lu, M.H. Liao, W.F. Ye, N.N. Lu, F. Han,
 Y.Z. Hu, Y.H. Hu, *J. Am. Chem. Soc.*, 2015, 137, 12296–12303.

[6] Jun. Hu, N.K. Wong, S. Ye, X. Chen, M.Y. Lu, A. Zhao, Y. Guo, A. Ma, A. Y Leung, J Shen, D. Yang, J. Am. Chem. Soc., 2015, **137**, 6837–6843.

[7] C. Bueno, M.L. Villegas, S.G. Bertolotti, C.M. Previtali, M.G. Neumann, M.V. Encinas, *Photochem. Photobiol.*, 2002, **76**, 385–390.