Electronic Supplementary Information

The study of a novel high selectivity pyrenyl-based fluorescence probe for Fe³⁺

detection designed by structure modulation strategy

Sen Liu^{1,2}, Jun Li¹, Tianjiao Hou^{1*} and Xuan Shen^{1,2*}

- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- 2. Zhangjiagang Institute of Nanjing Tech University, Suzhou 215600, P. R. China.

*Corresponding Author E-mail: hou_tianjiao@njtech.edu.cn, shenxuan@njtech.edu.cn

Materials and reagents

1-Pyrenylboronic acid, 2-bromo-5-(trifluoromethyl)pyridine, 2-bromo-5-methylpyridine, and Pd(PPh₃)₄ were purchased from Shanghai Haohong Biomedical Technology Co., Ltd. NaOH, FeCl₃, AlCl₃, FeCl₂·4H₂O, CrCl₃·6H₂O, NaCl, MgCl₂·6H₂O, CuCl₂·2H₂O, ZnCl₂, CaCl₂, MnCl₂, ZrCl₄, SrCl₂·6H₂O, BaCl₂·2H₂O, CdCl₂·2.5H₂O, InCl₃, LiCl·H₂O, KNO₃, AgNO₃, Co(NO₃)₂·6H₂O, Pb(NO₃)₂, Ni(NO₃)₂·6H₂O, Eu(NO₃)₃·6H₂O, La(NO₃)₃, Er(NO₃)₃·6H₂O, Tb(NO₃)₃·6H₂O, Dy(NO₃)₃·5H₂O, Sm(NO₃)₃, Y(NO₃)₃·6H₂O, HgSO₄, KF·2H₂O, NaCl, NaBr, Na₂SO₄, Na₂SO₃, NaHSO₃, NaHSO₄·H₂O, Na₂CO₃, NaHCO₃, CH₃COONa, KNO₃, NaNO₂, and NaClO₄·H₂O were purchased from Shanghai Lingfeng Chemical Reagent Co., Ltd. Hydrochloric acid and acetonitrile were purchased from Wuxi Yasheng Chemical Co., Ltd. Silica gel (200-300 mesh) was purchased from Qingdao Dingkang silica gel Co., Ltd.

Instruments

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker AM 400 MHz in chloroform-d solution, and the tetramethylsilane (TMS) signal as an internal standard. FT-IR spectra were measured on a Thermo Nicolet 380 FT-IR spectrophotometer with KBr pellets at room temperature. The electrospray ionization mass spectra (ESI-MS) were accomplished by Agilent 6200 series TOF/6500 series. The crystallographic data were collected on a Bruker SMART APEX II CCD area detector diffractometer. UV-Vis absorbance spectra were measured by a SHIMADZU UV-3600 spectrophotometer. Fluorescence spectra were performed by using a Hitachi F-7000 fluorescence Spectrophotometer, and 350 nm was used as an excitation wavelength throughout the experiment (E_X Slit = 2.5 nm, E_M Slit = 5 nm). Particle size distribution analyses were performed by dynamic light scattering (DLS) measurements at room temperature on a Brookhaven 90Plus/BI-MAS (USA). Transition electron microscopy (TEM) images were recorded on a Hitachi H7700 at a voltage of 120 kV. Samples for the TEM studies were perjared by using pHS-3C pH meter. Time-resolved fluorescence decay curves and PLQY were measured on an Edinburgh FLS 980 fluorescence spectrometer.

Fig. S1 The ¹H NMR spectrum of pypyr-CF₃ in CDCl₃.

Fig. S2 The ¹³C NMR spectrum of pypyr-CF₃ in CDCl₃.

Fig. S3 The ¹⁹F NMR spectrum of pypyr-CF₃ in CDCl₃.

Fig. S4 The ¹H NMR spectrum of pypyr-CH₃ in CDCl₃.

Fig. S5 The ¹³C NMR spectrum of pypyr-CH₃ in CDCl₃.

Fig. S6 The FT-IR spectrum of pypyr-CF₃.

Fig. S7 The FT-IR spectrum of pypyr-CH₃.

Fig. S8 The ESI-MS spectrum of pypyr-CF₃.

Fig. S9 The ESI-MS spectrum of pypyr-CH₃.

Fig. S10 The UV-Vis absorption (a) and fluorescence (b) spectra of pypyr-CF₃ and pypyr-CH₃ in acetonitrile.

Fig. S11 The dihedral angles in the crystal structures of pypyr-CF₃ (a) and pypyr-CH₃ (b).

Fig. S12 (a) Fluorescence spectra of pypyr-CH₃ (10 μ M) in MeCN/H₂O mixtures with different water fractions; (b) Plots of fluorescence intensity at 390 nm versus water fractions; (c) Photograph of pypyr-CH₃ solution taken under 365 nm UV-lamp.

Fig. S13 The packed C-H^{\dots} π interaction of pypyr-CF₃ (a) and pypyr-CH₃ (b). (H atoms are omitted for clarity)

Fig. S14 Fluorescence spectra of (a) **pypyr-CF**₃ (10 μ M) and (b) **pypyr-CH**₃ (10 μ M) in pure MeOH or MeOH/Glycerol (7:3) mixture.

Fig. S15 The photograph of **pypyr-CF**₃ and **pypyr-CH**₃ (10 μ M) in the presence of partial metal ions ([M] = 1 mM) in MeCN/H₂O solution under 365 UV lamp.

Fig. S16 The ¹H NMR spectra pypyr-CH₃ in the absence and presence of Zr^{4+} and Hg^{2+} in DMSO-d₆/D₂O.

Fig. S17 Fluorescence intensity ($\lambda_{em} = 433 \text{ nm}$) of **pypyr-CF₃** (10 µM) in the absence and presence of different anions (1 mM) in MeCN/H₂O (v/v = 7:3, 1 mM Tris-HCl buffer, pH = 7) solution. Black bar represents the response without Fe³⁺, and red bar indicates the response upon the addition of 100 equiv. of Fe³⁺.

Fig. S18 UV-Vis absorption spectra of **pypyr-CF**₃ (10 μ M) upon the gradual addition of Fe³⁺ in MeCN/H₂O (v/v = 7:3, 1 mM Tris-HCl buffer, pH = 7) solution.

Fig. S19 UV-Vis absorption spectra of Fe³⁺ (1 mM), **pypyr-CF**₃ (10 μ M) and **pypyr-CF**₃ + Fe³⁺ (100 equiv.) in MeCN/H₂O (v/v = 7:3, 1 mM Tris-HCl buffer, pH = 7) solution.

Fig. S20 Fluorescence spectrum of pypyr-CF₃ in solid state. Inset: photograph of pypyr-CF₃ in solid state under 365 nm UV lamp.

Probes	pypyr-CF ₃	pypyr-CH ₃
Empirical formula	$C_{22}H_{12}F_{3}N$	C ₂₂ H ₁₅ N
Formula weight	347.33	293.35
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ /c	$P2_1/c$
a (Å)	26.910(6)	17.626(3)
<i>b</i> (Å)	6.4608(15)	7.6841(13)
<i>c</i> (Å)	9.318(2)	11.574(2)
β (°)	94.442(3)	100.988(2)
$V(Å^3)$	1615.2(6)	1538.9(5)
Ζ	4	4
$D_{\rm c} ({\rm g}\cdot{\rm cm}^{-3})$	1.428	1.266
$\mu (\mathrm{mm}^{-1})$	0.108	0.073
F (000)	712	616
Crystal size (mm)	$0.19 \times 0.13 \times 0.11$	$0.16 \times 0.14 \times 0.08$
θ Range (°)	1.518-24.997	1.177-25.000
Reflections collected	10777	10732
Independent reflections	$2841 [R_{int} = 0.0518]$	$2710 [R_{int} = 0.0448]$
Reflections observed $[I > 2\sigma(I)]$	2082	1764
Data/restraints/parameters	2841 / 6 / 235	2710 / 1 / 209
Goodness-of-fit on F^2	1.088	1.023
$R_1/wR_2 \left[I > 2\sigma(I)\right]$	0.0566/0.1494	0.0468/0.1103
R_1/wR_2 (all data)	0.0773/0.1598	0.0791/0.1234
Max., Min. $\Delta \rho$ (e [·] Å ⁻³)	0.448, -0.358	0.185, -0.161

Table S1 The crystallographic data for pypyr-CF₃ and pypyr-CH₃.

21	8 ()		10 0
pypyr-CF ₃	pypyr-CH ₃		
F(1)-C(22)	1.310(4)	N(1)-C(17)	1.341(2)
C(20)-C(22)	1.482(4)	N(1)-C(21)	1.335(2)
N(1)-C(17)	1.343(3)	C(18)-C(19)	1.374(2)
N(1)-C(21)	1.339(3)	C(16)-C(17)	1.487(2)
C(16)-C(17)	1.496(3)	C(20)-C(22)	1.505(2)
C(17)-C(18)	1.379(3)	C(2)-C(3)	1.371(3)
C(21)-N(1)-C(17)	117.0(2)	C(13)-C(14)	1.385(2)
F(2)-C(22)-F(1)	107.0(3)	C(21)-N(1)-C(17)	117.76(15)
C(2)-C(1)-C(10)	121.2(2)	C(2)-C(1)-C(10)	120.91(18)
F(1)-C(22)-C(20)	112.8(3)	C(19)-C(20)-C(22)	122.23(17)

Table S2 Patial typical bond lengths (Å) and bond angles (°) for pypyr-CF3 and pypyr-CH3.