Machine-Learning Assisted Multiplex Detection of Catecholamine Neurotransmitters with a Colorimetric Sensor Array

M. Hassani-Marand ${ }^{\text {a }}$, N. Fahimi-Kashani ${ }^{b}$ and M. R. Hormozi-Nezhad ${ }^{\text {a,c* }}$
${ }^{a}$ Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
${ }^{b}$ Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
${ }^{c}$ Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
*Email: nfahimi@iut.ac.ir
hormozi@sharif.edu

Table of Contents

Fig. S1. TEM images of Citrate-capped (Cit-) AuNPs in absence (A) and presence (C) of DA. TEM images of Borohydride-capped ($\mathrm{BH}_{4^{-}}$) AuNPs in absence (B) and presence (D) of DA	S5
Fig. S2. Chemical structure and pK_{a} values of (A) DA, (B) EP, (C) NEP, and (D) LD.	S6
Fig. S3. The stability of (A) SE1 (Cit-AuNPs in Phosphate Buffer pH 7.0), (B) SE2 (BH4AuNPs in Citrate Buffer pH 4.5), and (C) SE3 (BH_{4}-AuNPs in Phosphate Buffer pH 7.0) in the 5-minute time intervals.	S7
Fig. S4. The predominant forms of (A) DA, (B) EP, (C) NEP, and (D) LD at different pH values.	S8
Fig. S5. DLS measurements of SE2 ($\mathrm{BH}_{4}-\mathrm{AuNPs} \mathrm{pH} 4.5$) in the absence (\mathbf{A}) and in the presence of $5 \mu \mathrm{M}$ of (B) DA and (C) LD after 20 min . The colorful spots show the corresponding images taken from the solutions.	S9
Fig. S6. The variation of time-cyclic UV-Vis spectra of SE1, SE2, and SE3 (in order from left to right) upon the addition of (A-C) DA, (D-F) EP, (G-I) NEP, and (J-L) LD at a concentration of $50 \mu \mathrm{M}$.	S10
Fig. S7. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of dopamine in	S11

the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .	
Fig. S8. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of epinephrine in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .	S12
Fig. S9. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of norepinephrine in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .	S13
Fig. S10. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of levodopa in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .	S14
Fig. S11. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of uric acid in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .	S15
Fig. S12. Heatmap showing cross-reactivity in the arrays' response. Visual encoding of the arrays' response at different concentrations for (A) DA, (B) EP, (C) NEP, and (D) LD.	S16
Fig. S13. 3D LDA score plot showing the discrimination between pure and mixture forms of the CNs (Mix1 DA5:EP5; Mix2 DA1:EP5; Mix3 DA1:NEP5; Mix4 DA5:NEP1; Mix5 DA1:NEP0.6; Mix6 DAO.6:NEP0.6; Mix7 DA0.6:EPO.6; Mix8 EP5:NEP5; Mix9 EP0.6:NEP1; Mix10 EP10:NEP1; Mix11 DA1:LD100; Mix12 EP5:LD60; Mix13 NEP1:LD80; Mix14 DA1:EP1:NEP1; Mix15 DA0.6:EP1:NEP5; Mix16 DA1:EP0.6:NEP1; Mix17 DA1:EP0.6:LD20; Mix18 EP0.6:NEP0.6:LD40; Mix19 DA0.6:NEP1:LD80; Mix20 DA5:EP5:NEP5:LD5; Mix21 DA1:EP1:NEP1:LD10; Mix22 DA0.6:EP0.6:NEP1:LD5; Mix23 DA1:EP0.6:NEP1:LD1). Concentrations are given in $\mu \mathrm{M}$.	S17
Fig. S14. 3D LDA score plot showing the discrimination between the analytes in their concentration ranges: DA (1-12); EP (3.6-9); NEP (3-12); and LD (10-70) in the human urine sample. Concentrations are given in $\mu \mathrm{M}$. Samples with the symbol -t were introduced into the LDA analysis in the form of a test set matrix.	S18
Fig. S15. Multivariate calibration of catecholamine neurotransmitters in the human urine sample with PLSR. The predicted versus measured concentrations for (A) DA, (B) EP, (C) NEP, and (D) LD. The data was randomly split into 80% calibration (red spots) and 20% prediction (blue spots) sets.	S19

Fig. S16. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of $50 \mu \mathrm{M}$ uric acid(UA, red), urea (U, light orange), creatinine (Cr , yellow), sodium (Na^{+}, light green), calcium (Ca^{2+}, dark green), potassium (K^{+}, light blue), chloride (cl^{-}, light purple), carbonate ($\mathrm{CO}_{3}{ }^{2-}$, dark blue), , phosphate ($\mathrm{PO}_{4}{ }^{3-}$, purple), dopamine (DA, dark orange), epinephrine (EP, dark pink), norepinephrine (NEP, neon green) and levodopa (LD, pink) after 20 min .	S20
Table S1. Concentration of CNs in Real sample analysis.	S21
Table S2. Sensing strategies for determination of CNs.	S22-S23
Table S3. Classification and Jackknifed classification matrix for the discrimination of mixtures of analytes with the following components (Mix1 DA5:EP5; Mix2 DA1:EP5; Mix3 DA1:NEP5; Mix4 DA5:NEP1; Mix5 DA1:NEP0.6; Mix6 DA0.6:NEP0.6; Mix7 DA0.6:EP0.6; Mix8 EP5:NEP5; Mix9 EP0.6:NEP1; Mix10 EP10:NEP1; Mix11 DA1:LD100; Mix12 EP5:LD60; Mix13 NEP1:LD80; Mix14 DA1:EP1:NEP1; Mix15 DA0.6:EP1:NEP5; Mix16 DA1:EP0.6:NEP1; Mix17 DA1:EP0.6:LD20; Mix18 EP0.6:NEP0.6:LD40; Mix19 DA0.6:NEP1:LD80; Mix20 DA5:EP5:NEP5:LD5; Mix21 DA1:EP1:NEP1:LD10; Mix22 DA0.6:EP0.6:NEP1:LD5; Mix23 DA1:EP0.6:NEP1:LD1).	S24-S28
Table S4. Classification and Jackknifed classification matrix for the discrimination of all analytes in their entire concentration range (DA 1 - $12 \mu \mathrm{M}$; EP 3.6-9 $\mu \mathrm{M}$; NEP 3 $12 \mu \mathrm{M}$; and $\mathrm{LD} 10-70 \mu \mathrm{M}$) in the human urine sample.	S29
Table S5. Analytical figures of merit for multivariate calibration of DA, EP, NEP, and LD in a human urine sample with PLSR.	S30

Synthesis of AuNPs with different capping agents

Synthesis of citrate-capped AuNPs (Cit-AuNPs)

Generally, 50 mL of 1 mM HAuCl 4 solution was prepared and boiled under reflux. While boiling, 5 mL of trisodium citrate $(38.8 \mathrm{mM})$ was added to the as-prepared solution under vigorous stirring. The heating and stirring were continued under reflux for a further 30 min . AuNPs formation was revealed by appearing wine red color in the solution.

Synthesis of borohydride-capped AuNPs ($\left.\mathrm{BH}_{4}-\mathrm{AuNPs}\right)$

First, solution 1 containing $\mathrm{HAuCl}_{4}(50.0 \mathrm{mM})$ and $\mathrm{HCl}(50.0 \mathrm{mM})$ was prepared. Then, $400 \mu \mathrm{~L}$ of the solution consisting of $\mathrm{NaBH}_{4}(50.0 \mathrm{mM}$ and $\mathrm{NaOH}(50.0 \mathrm{mM})$ was added to $100 \mu \mathrm{~L}$ of solution 1 . The resulting solution was stirred at room temperature for 15 minutes after adding 9.6 ml of DI water.

Fig. S1. TEM images of Citrate-capped (Cit-) AuNPs in absence (A) and presence (C) of DA. TEM images of Borohydride-capped ($\mathrm{BH}_{4}-$) AuNPs in absence (B) and presence (D) of DA
(A)
($\mathrm{pKa}_{1}=9.44$)

Dopamine
(B)

(pKa2 $=8.78$)
Epinephrine
(C)

Norepinephrine
(D)

Levodopa

Fig. S2. Chemical structure and $p K_{a}$ values of (A) DA, (B) EP, (C) NEP, and (D) LD.

Fig. S3. The stability of (A) SE1 (Cit-AuNPs in Phosphate Buffer pH 7.0), (B) SE2 (BH ${ }_{4}$-AuNPs in Citrate Buffer pH 4.5), and (C) SE3 (BH_{4}-AuNPs in Phosphate Buffer pH 7.0) in the 5-minute time intervals.

Fig. S4. The predominant forms of (A) DA, (B) EP, (C) NEP, and (D) LD at different pH values.

Fig. S5. DLS measurements of SE2 ($\mathrm{BH}_{4}-\mathrm{AuNPs} \mathrm{pH} 4.5$) in the absence (\mathbf{A}) and in the presence of $5 \mu \mathrm{M}$ of (B) DA and (C) LD after 20 min . The colorful spots show the corresponding images taken from the solutions.

Fig. S6. The variation of time-cyclic UV-Vis spectra of SE1, SE2, and SE3 (in order from left to right) upon the addition of (A-C) DA, (D-F) EP, (G-I) NEP, and (J-L) LD at a concentration of $50 \mu \mathrm{M}$.
(A)

(B)

(C)

Fig. S7. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of dopamine in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .

Fig. S8. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of epinephrine in the concentration range of $0-1000 \mu \mathrm{M}$ after 20min.

Fig. S9. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of norepinephrine in the concentration range of $0-1000 \mu \mathrm{M}$ after 20 min .

Fig. S10. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of levodopa in the concentration range of $0-1000 \mu \mathrm{M}$ after 20min.

Fig. S11. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of uric acid in the concentration range of $0-1000 \mu \mathrm{M}$ after 20min.

Fig. S12. Heatmap showing cross-reactivity in the arrays' response. Visual encoding of the arrays' response at different concentrations for (A) DA, (B) EP, (C) NEP, and (D) LD.

Fig. S13. 3D LDA score plot showing the discrimination between pure and mixture forms of the CNs (Mix1 DA5:EP5; Mix2 DA1:EP5; Mix3 DA1:NEP5; Mix4 DA5:NEP1; Mix5 DA1:NEP0.6; Mix6 DA0.6:NEP0.6; Mix7 DA0.6:EP0.6; Mix8 EP5:NEP5; Mix9 EP0.6:NEP1; Mix10 EP10:NEP1; Mix11 DA1:LD100; Mix12 EP5:LD60; Mix13 NEP1:LD80; Mix14 DA1:EP1:NEP1; Mix15 DA0.6:EP1:NEP5; Mix16 DA1:EP0.6:NEP1; Mix17 DA1:EP0.6:LD20; Mix18 EP0.6:NEP0.6:LD40; Mix19 DA0.6:NEP1:LD80; Mix20 DA5:EP5:NEP5:LD5; Mix21 DA1:EP1:NEP1:LD10; Mix22 DA0.6:EP0.6:NEP1:LD5; Mix23 DA1:EP0.6:NEP1:LD1). Concentrations are given in $\mu \mathrm{M}$.

Fig. S14. 3D LDA score plot showing the discrimination between the analytes in their concentration ranges: DA (1-12); EP (3.6-9); NEP (3-12); and LD (10-70) in the human urine sample. Concentrations are given in $\mu \mathrm{M}$. Samples with the symbol -t were introduced into the LDA analysis in the form of a test set matrix.

Fig. S15. Multivariate calibration of catecholamine neurotransmitters in the human urine sample with PLSR. The predicted versus measured concentrations for (A) DA, (B) EP, (C) NEP, and (D) LD. The data was randomly split into 80\% calibration (red spots) and 20\% prediction (blue spots) sets.

Fig. S16. UV-Vis spectra of (A) SE1 (B) SE2, and (C) SE3 in the presence of $50 \mu \mathrm{M}$ uric acid(UA, red), urea (U , light orange), creatinine (Cr , yellow), sodium (Na^{+}, light green), calcium (Ca^{2+}, dark green), potassium (K^{+}, light blue), chloride (cl^{-}, light purple), carbonate ($\mathrm{CO}_{3}{ }^{2-}$, dark blue), , phosphate ($\mathrm{PO}_{4}{ }^{3-}$, purple), dopamine (DA, dark orange), epinephrine (EP, dark pink), norepinephrine (NEP, neon green) and levodopa (LD, pink) after 20min.

Table S1. Concentration of CNs in Real sample analysis.

Target analyte	Volume ($\mu \mathrm{L}$) of 1 mM analyte which is added to $80 \mu \mathrm{~L}$ of urine in a 5 mL volumetric flask	concentration ($\mu \mathrm{M}$) of analyte in the prepared urine sample	Final concentration ($\mu \mathrm{M}$) of CNs in probe
DA	20	4	1
	80	16	4
	120	24	6
	160	32	8
	200	40	10
	240	48	12
EP	68	13.6	3.4
	100	20	5
	140	28	7
	160	32	8
	360	72	9
NEP	60	12	3
	80	16	4
	100	20	5
	160	32	8
	200	40	10
LD	200	40	10
	400	80	20
	600	120	30
	800	160	40
	1000	200	50
	1200	240	60

Table S2. Sensing strategies for determination of CNs.

No.	Method	analyte	Linear range	LOD	Simultaneous	Nakedeye	pH	time	Real sample	Reverence
1	HPLC-FLD	$\begin{gathered} \text { DA } \\ \text { EP } \\ \text { NEP } \\ \text { LD } \end{gathered}$	$\begin{gathered} 0.05-6.0 \mu \mathrm{M} \\ 0.1-24.0 \mu \mathrm{M} \\ 0.01-10.0 \mu \mathrm{M} \\ 0.025-6.0 \mu \mathrm{M} \end{gathered}$	0.5 nM 2.0 nM 1.0 nM 5.0 nM	-	-	8.0	Pretreatme nt time (h) + 15 min	Human serum and urine	$\underline{1}$
2	CE-LIF	$\begin{gathered} \text { 5-HT } \\ \text { Tyr } \\ \text { DA } \end{gathered}$	$\begin{aligned} & 0.5-500 \mu \mathrm{M} \\ & 0.05-50 \mu \mathrm{M} \\ & 0.5-500 \mu \mathrm{M} \end{aligned}$	$\begin{gathered} 0.3 \mathrm{nM} \\ 0.02 \mathrm{nM} \\ 0.2 \mathrm{nM} \end{gathered}$	-	-	8.0	$\begin{aligned} & \text { Pretreatme } \\ & \text { nt time }(\mathrm{h})+ \\ & 10 \mathrm{~min} \end{aligned}$	Human serum and urine	1
3	HPLC-MS	$\begin{gathered} \text { DA } \\ \text { EP } \\ \text { NEP } \\ 5-H T \end{gathered}$	$\begin{gathered} 0-0.35 \mu \mathrm{M} \\ - \\ 0-1.42 \mu \mathrm{M} \end{gathered}$	$\begin{aligned} & 0.04 \mu \mathrm{M} \\ & 0.01 \mu \mathrm{M} \\ & 0.06 \mu \mathrm{M} \\ & 0.01 \mu \mathrm{M} \end{aligned}$	-	-	7.4	Pretreatme nt time (h) + 20 min	Human blood	$\underline{2}$
4	HPLC-FLD	DA EP NEP LD Tyr MN	$\begin{gathered} 0.002-0.5 \mu \mathrm{M} \\ 0.002-1 \mu \mathrm{M} \\ 0.002-1 \mu \mathrm{M} \\ 0.004-0.2 \mu \mathrm{M} \\ 0.002-0.5 \mu \mathrm{M} \\ 0.002-0.2 \mu \mathrm{M} \end{gathered}$	$\begin{gathered} 0.1 \mathrm{nM} \\ 0.4 \mathrm{nM} \\ 0.4 \mathrm{nM} \\ 1.45 \mathrm{nM} \\ 0.17 \mathrm{nM} \\ 0.1 \mathrm{nM} \end{gathered}$	-	-	7.6	Pretreatme nt time (h) + 40 min	Liver sample and brain sample	$\underline{3}$
5	Electrochemical	$\begin{aligned} & \text { SE } \\ & \text { EP } \end{aligned}$		$\begin{aligned} & 0.31 \mu \mathrm{M} \\ & 0.27 \mu \mathrm{M} \end{aligned}$	*	-	7.4	-	-	4
6	Electrochemical	DA AA UA	$0.1-700 \mu \mathrm{M}$	$30 \mathrm{nM}$	-	-	7.0	-	DA ampoule AA ampoule Urine samples	$\underline{5}$
7	Electrochemical	DA AA UA	$\begin{gathered} 3-30 \mu \mathrm{M} \\ 25-300 \mu \mathrm{M} \\ 5-70 \mu \mathrm{M} \end{gathered}$	$\begin{gathered} 2.67 \mu \mathrm{M} \\ 23.38 \mu \mathrm{M} \\ 4.70 \mu \mathrm{M} \end{gathered}$	*	-	7.0	-	Human serum urine samples multivitamin tablets	$\underline{6}$
8	Electrochemical	DA	0.1-5 $\mu \mathrm{M}$	$0.1 \mu \mathrm{M}$	-	-	7.0	<1 s	-	$\underline{7}$
9	Electrochemical	Ep	$3-100 \mu \mathrm{M}$	$3 \mu \mathrm{M}$	-	-	8.0	-	-	8
10	Optical (colorimetry and Fluorimetry)	EP	$\begin{aligned} & \mathrm{c}_{2} 2-500 \mu \mathrm{M} \\ & \mathrm{~F}_{0} .5-30 \mu \mathrm{M} \end{aligned}$	$\begin{aligned} & { }^{\mathrm{c}} 10 \mu \mathrm{M} \\ & { }^{\mathrm{F}} 0.2 \mu \mathrm{M} \end{aligned}$	-	*	7.0	30 min	Artificial urine	$\underline{9}$

11	Optical (nanozymes basedColorimetry)	$\begin{gathered} \text { AA } \\ \text { 2,4-DP } \\ \text { EP } \end{gathered}$	$\begin{gathered} 0-25 \mu \mathrm{M} \\ 3.1-122.7 \text { and } \\ 122.7-613.5 \mu \mathrm{M} \\ 41.09-109.2 \text { and } \\ 109.2-272.93 \mu \mathrm{M} \end{gathered}$	$\begin{aligned} & 0.29 \mu \mathrm{M} \\ & 0.76 \mu \mathrm{M} \\ & 0.70 \mu \mathrm{M} \end{aligned}$		*	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	3 min 3 min	Vegetables, fruits, beverages, human serum	10
12	Optical (photoluminescent)	DA	$0.1-50 \mu \mathrm{M}$	10 nM		-	8.9	1 h	Urine	11
13	Optical (Colorimetry)	EP	$5.5-6.5 \mu \mathrm{M}$	$1.3 \mu \mathrm{M}$	-	-	alkaline	-	-	12
14	Optical (Colorimetry)	EP	1-400 $\mu \mathrm{M}$	$0.6 \mu \mathrm{M}$	-	*	-	10 min	-	13
15	Optical (Colorimetry and Fluorimetry)	NEP	$\begin{gathered} \text { 56.6-8920 } \mu \mathrm{M} \\ \mathrm{~F}_{0.067-1 ~ \mu \mathrm{M}} \end{gathered}$	$\begin{gathered} \mathrm{C}_{5} .59 \mu \mathrm{M} \\ { }^{\mathrm{F}} 0.018 \mu \mathrm{M} \end{gathered}$	-	*	-	2 min	Synthetic blood serum	14
16	Optical (Colorimetry)	$\begin{aligned} & \text { DA } \\ & \text { LD } \\ & \text { EP } \end{aligned}$	$\begin{gathered} 3.2-20 \mu \mathrm{M} \\ 0.16-10 \mu \mathrm{M} \\ 1.5-40 \mu \mathrm{M} \end{gathered}$	$\begin{gathered} 1.2 \mu \mathrm{M} \\ 0.086 \mu \mathrm{M} \\ 0.97 \mu \mathrm{M} \end{gathered}$	*	*	-	-	Ringer's injection serum	15
17	Optical (Colorimetry)	LD	50.7-202.8 $\mu \mathrm{M}$	$3.04 \mu \mathrm{M}$	-	*	-	-	-	16
18	Optical (Colorimetry array)	DA EP NEP	6.53-195.84 $\mu \mathrm{M}$ 54.58-163.75 $\mu \mathrm{M}$ 59.10-118.22 $\mu \mathrm{M}$	$\begin{gathered} 32.64 \mu \mathrm{M} \\ 5.46 \mu \mathrm{M} \\ 5.91 \mu \mathrm{M} \end{gathered}$	*	*	7.0	20 min	Human Urine	17
19	Optical (Fluorimetry array)	DA EP NEP	$\begin{aligned} & 1.63-65.28 \mu \mathrm{M} \\ & 1.36-54.58 \mu \mathrm{M} \\ & 1.48-59.11 \mu \mathrm{M} \end{aligned}$	$\begin{gathered} 1.63 \mu \mathrm{M} \\ 0.0027 \mu \mathrm{M} \\ 0.0029 \mu \mathrm{M} \end{gathered}$	*	*	7.0	5 min	Human Urine	18
20	Optical (Colorimetry array)	DA EP NEP LD	$\begin{gathered} 0.6-9 \mu \mathrm{M} \\ 0.1-10 \mu \mathrm{M} \\ 0.1-9 \mu \mathrm{M} \\ 1-70 \mu \mathrm{M} \end{gathered}$	0.3 Mm $0.5 \mu \mathrm{M}$ $0.2 \mu \mathrm{M}$ $1.9 \mu \mathrm{M}$	*	*	$\begin{gathered} 4.5 \text { and } \\ 7.0 \end{gathered}$	20 min	Human Urine	This study

Table S3. Classification and Jackknifed classification matrix for the discrimination of mixtures of analytes with the following components (Mix1 DA5:EP5; Mix2 DA1:EP5; Mix3 DA1:NEP5; Mix4 DA5:NEP1; Mix5 DA1:NEP0.6; Mix6 DA0.6:NEP0.6; Mix7 DA0.6:EP0.6; Mix8 EP5:NEP5; Mix9 EP0.6:NEP1; Mix10 EP10:NEP1; Mix11 DA1:LD100; Mix12 EP5:LD60; Mix13 NEP1:LD80; Mix14 DA1:EP1:NEP1; Mix15 DA0.6:EP1:NEP5; Mix16 DA1:EP0.6:NEP1; Mix17 DA1:EP0.6:LD20; Mix18 EP0.6:NEP0.6:LD40; Mix19 DA0.6:NEP1:LD80; Mix20 DA5:EP5:NEP5:LD5; Mix21 DA1:EP1:NEP1:LD10; Mix22 DA0.6:EP0.6:NEP1:LD5; Mix23 DA1:EP0.6:NEP1:LD1).

Classification Matrix																																											
	Pure																		Binary													Ternary						Quaternary				$$	
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -1 \\ & \boxed{C} \end{aligned}$	$\stackrel{n}{\square}$	$\begin{aligned} & \mathbf{0} \\ & 0 \\ & 0 \\ & \mathbf{U} \end{aligned}$	$\begin{array}{r} \text { - } \\ \text { in } \end{array}$	$\begin{aligned} & \text { n } \\ & \mathbf{Q} \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \bullet \\ & 0 \\ & 0 \\ & \stackrel{1}{2} \end{aligned}$	$\begin{gathered} \stackrel{-1}{0} \\ \stackrel{u}{2} \end{gathered}$	$\begin{aligned} & \text { n } \\ & \text { Q } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \text { O-1 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{cc} 9 \\ 0 \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & \vec{x} \\ & \cdot \bar{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \bar{\Sigma} \end{aligned}$	$\stackrel{m}{x}$	$\begin{aligned} & \dot{X} \\ & \dot{\Sigma} \end{aligned}$	$\stackrel{n}{\Sigma}$	$\begin{aligned} & 0 \\ & \dot{x} \\ & \dot{\Sigma} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathbf{x}}$	$\begin{aligned} & \infty \\ & \stackrel{x}{\Sigma} \\ & \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{x}{\Sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{x} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\rightharpoonup}{x} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \cdot \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \dot{x} \end{aligned}$		$\begin{aligned} & n \\ & \stackrel{x}{x} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{x}{x} \\ & \dot{\Sigma} \end{aligned}$	$\stackrel{N}{\underset{x}{x}}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{x} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\underset{x}{x}}{\underset{\Sigma}{x}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\mathrm{x}} \\ & \stackrel{\Sigma}{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\lambda}{x} \\ & \dot{x} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{x}{\Sigma} \\ & \mathbf{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\Sigma}{x} \end{aligned}$		
DA 0.6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
DA 1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
DA 5	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 0.6	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 1	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 5	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 10	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 0.6	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 1	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 5	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 1	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 10	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 20	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100

LD 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	3	0	0		0	0	0	0	0	0	0	0			0	0				0	0	0	0			0	0	0	0	0	100	100
LD 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	3	0		0	0	0	0	0	0	0	0	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
LD 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	3		0	0	0	0	0	0	0	0	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		3	0	0	0	0	0	0	0			0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mlix 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	3	0	0	0	0	0	0	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix3	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	3	0	0	0	0	0			0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix4	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	3	0	0	0	0	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix5	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	3	0	0	0			0	0				0	0	0	0			0	0	0	0	0	100	100
Mix6	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	3	0	0	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix7	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	3	0			0	0				0	0	0	0			0	0	0	0	0	100	100
Mix8	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	3	0		0	0	0			0	0	0	0		0	0	0	0	0	0	100	100
Mix9	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0			0	0	0			0	0	0	0			0	0	0	0	0	100	100
Mix10	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		3	0	0		0	0	0	0	0		0	0	0	0	0	0	100	100
Mix11	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0			0	3	0			0	0	0	0			0	0	0	0	0	100	100
Mix12	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	3		0	0	0	0	0		0	0	0	0	0	0	100	100
Mix13	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0			0	0				0	0	0	0		0	0	0	0	0	0	100	100
Mix14	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	3	0	0	0		0	0	0	0	0	0	100	100
Mix15	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0			0	3	0	0			0	0	0	0	0	100	100
Mix16	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	3	0		0	0	0	0	0	0	100	100
Mix17	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0			0	0	0	3		0	0	0	0	0	0	100	100
Mix18	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0		3	0	0	0	0	0	100	100
Mix19	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0		0	3	0	0	0	0	100	100
Mix20	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0		0	0	3	0	0	0	100	100
Mix21	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0		0	0	0	3	0	0	100	100
Mix22	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0		0	0	0	0	3	0	100	100
Mix23	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0			0	0	0	0			0	0	0	0	3	100	100
Total	3	3	3	3	3	3	3	3	3	3	3	3	3	3		3	3	3	3		3	3	3	3	3	3	3	3	3		3	3	3		3	3	3	3	3		3	3	3	3	3	3	-	-

Jack-knife classification Matrix																																											
	Pure																		Binary													Ternary						Quaternary					
	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{\Delta}{-1} \\ & \overleftarrow{B} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \boxed{\Delta} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \boldsymbol{u} \end{aligned}$	$\begin{array}{r} \text { r } \\ \text { in } \end{array}$	$\begin{aligned} & \text { n } \\ & \text { 邑 } \end{aligned}$	$\begin{aligned} & \text { 을 } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & 0 \mathbf{~} \\ & \mathbf{Z} \end{aligned}$	$\begin{aligned} & \text { ㄱ } \\ & \stackrel{\rightharpoonup}{\mathbf{Z}} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{\text { L }}{2} \end{aligned}$	-1	$\begin{aligned} & n \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 으́ } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	8 9 1	$\underset{\Sigma}{-\bar{x}}$	$\begin{aligned} & \stackrel{N}{x} \\ & \bar{\Sigma} \end{aligned}$	$\begin{aligned} & \underline{x} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	$\begin{aligned} & \pm \\ & \dot{\Sigma} \\ & \hline \end{aligned}$	$\stackrel{N}{\underline{x}}$	$\begin{aligned} & 0 \\ & \stackrel{x}{\Sigma} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{x}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{x} \\ & \end{aligned}$	$\stackrel{0}{x}$	$\begin{aligned} & 0 \\ & \dot{x} \\ & \dot{\Sigma} \end{aligned}$	$\stackrel{-7}{\bar{x}}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\Sigma}{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\rightharpoonup}{x} \\ & \cdot \bar{\Sigma} \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \vec{x} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{n}{x} \\ & \dot{x} \\ & \Sigma \end{aligned}$	$\begin{aligned} & \bullet \\ & \vec{x} \\ & \cdot \Sigma \Sigma \end{aligned}$	$\begin{aligned} & \stackrel{\lambda}{x} \\ & \cdot \underline{x} \end{aligned}$	$\begin{aligned} & \boldsymbol{\infty} \\ & \vec{x} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{x}} \\ & \stackrel{x}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{x}{\Sigma} \\ & \dot{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{\lambda}{x} \\ & \stackrel{x}{\Sigma} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\Sigma}{\mathbf{X}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \dot{x} \\ & \hline \end{aligned}$		
DA 0.6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
DA 1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
DA 5	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 0.6	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 1	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 5	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
EP 10	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 0.6	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 1	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
NEP 5	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 1	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 10	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 20	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
LD 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mlix2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100

Mix3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	100	100
Mix13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	100	100
Mix14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	100	100
Mix15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	100	100
Mix16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	100	100
Mix17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	100	100
Mix18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	100	100
Mix19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	100	100
Mix20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	100	100
Mix21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	100	100
Mix22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	100	100
Mix23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	100	100
Total	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-	-

Table S4. Classification and Jackknifed classification matrix for the discrimination of all analytes in their entire concentration range (DA $1-12 \mu \mathrm{M}$; EP 3.6-9 $\mu \mathrm{M}$; NEP 3-12 $\mu \mathrm{M}$; and LD 10-70

Classification Matrix							
Analytes	DA	EP	NEP	LD	Total	Sensitivity	Specificity
DA	13	0	0	0	13	100	100
EP	0	13	0	0	13	100	100
NEP	0	0	13	0	13	100	100
LD	0	0	0	14	14	100	100
Total	13	13	13	14	53	-	-
Jackknifed Classification Matrix							
Analytes	DA	EP	NEP	LD	Total	Sensitivity	Specificity
DA	13	0	0	0	13	100	100
EP	0	13	0	0	13	100	100
NEP	0	0	13	0	13	100	100
LD	0	0	0	14	14	100	100
Total	13	13	13	14	53	-	

$\mu \mathrm{M})$ in the human urine sample.

Table S5. Analytical figures of merit for multivariate calibration of DA, EP, NEP, and LD in a human

Analyte	LVs	RMSEC	RMSECV	RMSEP	$\mathbf{R}^{2}{ }_{c}$	$\mathbf{R}^{2}{ }_{\mathrm{cv}}$	\mathbf{R}^{2}	SEN	Anal. SEN	LOD $_{\text {min }}(\mu \mathrm{M})$	LOQ $(\mu \mathrm{M})$	Linear Range $(\mu \mathrm{M})$
DA	3	0.1777	0.2232	0.2686	0.9977	0.9967	0.9897	0.0385	23.6819	0.3313	0.9938	$1-12$
EP	2	0.2808	0.3223	0.0855	0.9983	0.9977	1.000	0.0505	18.6798	0.4604	1.3812	$3.4-9$
NEP	2	0.1366	0.1602	0.0428	0.9996	0.9994	1.000	0.0485	24.3654	0.2248	0.6745	$3-10$
LD	2	1.1246	1.2804	1.3333	0.9992	0.9989	0.9991	0.0031	2.6408	1.8603	5.5808	$10-60$

urine sample with PLSR.

References

1. L. Cao, L. Wu, H. Zhong, H. Wu, S. Zhang, J. Meng and F. Li, Acta Chromatographica, 2021.
2. V. Carrera, E. Sabater, E. Vilanova and M. A. Sogorb, J. Chromatogr. B, 2007, 847, 88-94.
3. X. Huang, X.-F. Guo, H. Wang and H.-S. Zhang, Arabian Journal of Chemistry, 2019, 12, 1159-1167.
4. R. banu, B. E. Kumara Swamy and E. Ebenso, Inorganic Chemistry Communications, 2022, 144, 109868.
5. H. Moradpour and H. Beitollahi, Journal, 2022, 8.
6. Z. Temoçin, Sensors and Actuators B: Chemical, 2013, 176, 796-802.
7. E. Farjami, R. Campos, J. S. Nielsen, K. V. Gothelf, J. Kjems and E. E. Ferapontova, Analytical chemistry, 2013, 85, 121-128.
8. D. Molinnus, A. Bartz, M. Bäcker, P. Siegert, H. Willenberg, A. Poghossian, M. Keusgen and M. J. Schöning, Procedia Engineering, 2015, 120, 540-543.
9. U. Sivasankaran and K. Girish Kumar, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117292.
10. X. Zhu, J. Tang, X. Ouyang, Y. Liao, H. Feng, J. Yu, L. Chen, Y. Lu, Y. Yi and L. Tang, Biosensors and Bioelectronics, 2022, 216, 114652.
11. Q. Wang, K. Zheng, W. Zhang and M.-J. Li, Journal of Inorganic Biochemistry, 2022, 234, 111902.
12. M. R. Siddiqui, M. Z. Rafiquee, S. M. Wabaidur, Z. A. Alothman, M. S. Ali and H. A. Allohedan, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 2015, 31, 437-443.
13. M. Zhang, Y. Zhang, C. Yang, C. Ma and J. Tang, Talanta, 2021, 224, 121840.
14. S. Menon, A. R. Jose, S. Jesny and K. G. Kumar, Analytical Methods, 2016, 8, 5801-5805.
15. M. R. Hormozi Nezhad, J. Tashkhourian and J. Khodaveisi, Journal of the Iranian Chemical Society, 2010, 7, S83-591.
16. M. Lettieri, R. Emanuele, S. Scarano, P. Palladino and M. Minunni, Analytical and Bioanalytical Chemistry, 2022, 414, 1713-1722.
17. S. Jafarinejad, M. Ghazi-Khansari, F. Ghasemi, P. Sasanpour and M. R. Hormozi-Nezhad, Sci. Rep., 2017, 7, 8266.
18. S. Jafarinejad, A. Bigdeli, M. Ghazi-Khansari, P. Sasanpour and M. R. Hormozi-Nezhad, ACS Chem Neurosci, 2020, 11, 25-33.
