Supplementary materials for

A visual ratiometric fluorescence sensor for glutathione response based on MnO₂ nanowires as oxidants, quencher and recognition unit

Yu Fan^{a,1}, Xin Wang^{a,1}, He Huang^a, Yumeng Yang^a, Jinlin Guo^{a,c}, Shajie Luo^{a*},

Meilian Zhao^{b*}, Yang Li^{b*}

^a Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^b School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^c State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^{*} Corresponding author.

E-mail address: <u>liyang@cdutcm.edu.cn</u> (Y. Li), <u>zhaomeilian2009@126.com</u> (M. Zhao), <u>luoshajie@cdutcm.edu.cn</u> (S. Luo)

¹ Co-first author.

Fig. S1. (A) and (B) The TEM image of the as-prepared MnO_2 NWs.

Fig.S2. (A) UV–vis absorption spectrum of VB₁ and VB₁ + MnO₂ NWs; (B) The time-resolved fluorescence decay curve of RhB and RhB + MnO₂ NWs; (C) UV–vis absorption spectrum of RhB and RhB + MnO₂ NWs; (D) UV–vis absorption spectrum of GSH, MnO₂ NWs and GSH + MnO₂

NWs; (E) Schematic illustration of VB_1 being oxidized by MnO_2 NWs to $oxVB_1$.

Fig. S3. Effects of pH on the ratiometric fluorescent sensor. Plots of I₄₅₀, I₅₈₀, and the ratio value

*I*₅₈₀/*I*₄₅₀ versus pH, respectively.

Fig.S4. The linear relationship between the ratio value I_{580}/I_{450} and L-cysteine concentrations from

500 to 3000 $\mu M.$

Fig. S5. (A) Selectivity of the ratiometric fluorescent sensor, a: l-alanine, b: l-phenylalanine, c:
proline, d: methionine, e: glucose, f: NaCl, g: KCl, h: NaHCO₃, i: NaH₂PO₄, j: H₂O and K: GSH.
(B) Photographs of the ratiometric fluorescent sensor under UV light after addition of different

substances.

Sample	Added (µM)	Detected ^a (μ M)	Recovery (%)
whitening capsules	0	475.9 ± 10.5	_
	500	998.8 ± 10.6	104.6
	1000	1481 ± 11.2	100.5
glutathione tablets	0	490.0 ± 7.7	_
	500	1037 ± 11.3	109.4
	1000	1546 ± 12.3	105.6

Table S1 Recovery results of GSH in real samples.

 $^{\rm a}$ Average of three determination \pm SD, n=3

Sample	Present work (µM)	HPLC (µM)
whitening capsules	475.9 ± 10.5	483.9 ± 3.9
glutathione tablets	490.0 ± 7.7	487.3 ± 6.5

Table S2 Applications of the prepared sensor to the real sample in contrast to HPLC.