Supporting Information

Biomimetic Peptide Nanoparticles Participate in Natural Coagulation for Hemostasis and Wound Healing

Huange Xu,[‡]^{a,b} Qilin Liang,^{‡a,b} Litao Li,^{‡c} Gaofeng Qi,^b Lei Wang,^{*,b} Lining Zhan,^d Mengru Ding, ^b Kuo Zhang^b and Xu Cui^{*c}

^a College of Medicine, Southwest Jiaotong University, No. 111 Beiyiduan, Second Ring Road, Chengdu 610031, Sichuan Province, China

^b CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China Email: wanglei@nanoctr.cn

^c Department of Orthopaedics, The 4th Medical Center of Chinese PLA General Hospital, Jia No.17 Heishanhu road, Beijing 100091, China Email: cuixuprossor@163.com

^d School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan Province, China

Figure S1. HPLC data of purified peptides, (a) C_6KL and (b) C_6KG .

Figure S2 (a,b) Molecular structure of C_6KL' (a) and C_6KG' (b). (c,d) HPLC data of C_6KL' (c) and C_6KG' (d).

Figure S3. The MALDI-TOF-MS spectra of C_6KL (a) and C_6KG (b).

Figure S4. ESI-MS spectra of purified C_6KL' (a) and C_6KG' (b).

Figure S5. (a) TEM images of C₆KL (30 μ M) NPs without collagen in V_{water}/V_{DMSO} = 99/1 solution in three days. (b) TEM images of C₆KL' (30 μ M) NPs with collagen in V_{water}/V_{DMSO} = 99/1 solution in three days.

Figure S6. The CD spectra of $C_6 KL$ (20 $\mu M) NPs without collagen in three days.$

Figure S7. The MALDI-TOF-MS spectrum of C_6KT .

Figure S8. (a) TEM images of C₆KT (30 μ M) NPs (0 h), short NFs (24 h), and long NFs (72 h) incubated with collagen. (b) TEM images of C₆KT (30 μ M) NPs without collagen incubation in three days.

Figure S9. The CD spectra of C_6KT . (a) C_6KT (20 μ M) NPs incubated with collagen in three days. (b) C_6KT (20 μ M) NPs without collagen incubation in three days.

Figure S10. (a) TEM images of C₆KG (30 μ M) NPs without Ca²⁺ in V_{water}/V_{DMSO} = 99/1 solution in three days. (b) TEM images of C₆KG' (30 μ M) NPs with Ca²⁺ in V_{water}/V_{DMSO} = 99/1 solution in three days.

Figure S11. The CD spectra of C_6 KG (20 μ M) NPs without Ca²⁺ in three days.

Figure S12. The CLSM images of $C_6 KL$ (30 $\mu M)$ incubated with collagen for 4 h.

Figure S13. (a) The CLSM images of C_6KT (30 μ M) incubated with collagen for 2 and 4 h. (b) Quantification of the fluorescence intensity in C_6KL and C_6KT incubated with collagen, separately. The results showed weak interactions between C_6KT and collagen compared with those between C_6KL and collagen.

Figure S14. (a,b) CLSM images of non-activated platelets treated with C₆KG (30 μ M) (a) and PBS (b) in 1 h. (c) CLSM images of C₆KG (30 μ M) treated with ADP (0.1 M, 10 μ L) activated platelets in 2 h. (d,e) CLSM images of non-activated platelets treated with C₆KG (30 μ M) (d) and PBS (e) in 2 h. The results showed that C₆KG could induce aggregates of activated platelets.

Figure S15. (a,b) Hemolysis images (a) and rate (b) of mixture of C_6KL and C_6KG (mole ratio = 1:1) at different concentrations.

Figure S16. The cytotoxicity of HUVECs treated with C_6KG (a) and C_6KL (b). The results indicated the good biocompatibility of C_6KG and C_6KL .

Figure S17. (a) International normalized ratio (INR) of prothrombin time (PT) and (b) Activated partial thromboplastin time (aPTT) of plasma treated with different concentration. The results indicated that there were no obviously change of PT and aPTT when treated with mixture of C_6 KL and C_6 KG.

Figure S18. Variation of storage modulus (G') and loss modulus (G''). (a) $C_6KL/C_6KG@$ CS/Alg solution and CS/Alg solution. (b) $C_6KL/C_6KG@CS/Alg$ gel and CS/Alg gel.