Supporting Information

In Situ Self-Assembly of Polydopamine inside Injectable Hydrogels: Antibacterial Activity and Photothermal Therapy for Superbug-Infected Wound Healing

Yi Zhu,^{†a,c,e} Ling Lin, ^{†b} Yuntao Xie, ^{†c} Qinghua Wang, ^d Chenghong Gu, ^a Yu Chen, ^{a,c,e} Yeping Song, ^c Guohao Han, ^c Weipeng Lu, ^{*a,c} and Yanchuan Guo^{*a,c,e}

^a Key Laboratory of Photochemical conversion and Optoelectronic Material, Technical Institute

of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

E-mail: luweipeng@mail.ipc.ac.cn; yanchuanguo@mail.ipc.ac.cn

^b Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute Of Oceanography Ministry of Natural Resources, Xiamen 361005, P.R. China.

^c Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences of Xiamen University, Xiamen 361002, P.R. China.

^d Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese

Academy of Sciences, Hangzhou 310000, China.

^e University of Chinese Academy of Sciences, Beijing 100049, China.

[†]Y.Z., L.L. and Y.X contributed equally to this work.

Figure S1. Schematic image of preparing specimens underwater.

Figure S2. The standard curve of the production of ROS.

Figure S3. Photographs of colour changes of the GCPP-PDA gel along with the continuous self-assembly of dopamine.

Figure S4. Photographs of the coagulation effect of control and GCPP-PDA gel in whole blood.

Figure S5. a) UV-vis spectra of PDA/PBS solution with different concentration (1 μ g~100 μ g). b) The standard curve of the PDA. c) UV-vis spectra of gel/PBS solution with different extraction times at 37 °C, the volume of PBS was three time of the gel.

Figure S6. The self-assembly of PDA NPs. The steps are presented in the electropolymerization representing the starting reaction for PDA formation.

Figure S7. The ABTS⁺ scavenging activity of the PDA NPs at different assembly time.

Figure S8. a) The stable PAM-PDA solution (positive charged) presents pink. b) The SEM image of the PAM-PDA solution (vacuum freeze drying), and the hydrodynamic diameter of the PDA nanoparticles in the PAM-PDA solution. c) FT-IR test results of PAM and PAM-PDA.

Figure S9. Raman spectra of Dopamine, PAM, PAM-PDA.

Figure S10. a) H₂O₂ generated by GCPP-PDA gel after self-assembly for different time at 37 °C.
b) The antibacterial rates of the GCPP-PDA gel after immersing in PBS for different time.

Figure S11. Crystal violet staining image and its corresponding absorbance for integrated MRSA biofilm incubated with the SC-PDA NPs and the GCPP-PDA gel. The biofilm without incubation with the sample was used as the control.

Figure S11. EDS of the GCPP-PDA gel.

Figure S12. The FT-IR spectra of the samples.

Figure S13. Photograph of the injectable GCPP-PDA hydrogel.

Figure S14. Rheological property of the GCPP-PDA gel. a) Strain sweep measurements of G' (storage modulus) and G" (loss modulus) of the GCPP-PDA gel. b) Dynamic step-strain measurements of G' (storage modulus) and G" (loss modulus) under repeated deformation of 1% strain and 100% strain. c) G' (storage modulus) and G" (loss modulus) of the GCPP-PDA gel with different self-assembly time of PDA.

Figure S15. TGA curves of a series of the GCPP-PDA gels with different self-assembly time of dopamine.

Figure S16. The microscopy images of the MC3T3-E1 cells cultured in the presence of unconditioned media and GCPP-PDA gel conditioned medium for 72 hours, respectively.

Figure S17. The growth curves of the MC3T3-E cells cultured in each group by the the Incucyte Live-Cell Analysis system.

Figure S18. The immunogenicity results of the GCPP-PDA gel using CFSE as maker and analysing by flow cytometry (IV ConA as positive group, culture medium as negative, PE antimouse CD 3 and PE Rat IgG2b Isotype as antibodies).

Figure S19. Photographs of MRSA colonies after treatments with PBS, GCPP gel, GCPP-Van gel, GCPP-PDA gel, GCPP-PDA gel (NIR) *in vivo*.

Group	Rabbit blood	GCPP-PDA	CaCl ₂	
	(natrium citricum)	gel	(0.25 M)	Clotting time
1	1 mL	0 mg	0 µL	Non
2	1 mL	0 mg	100 µL	365 s
3	1 mL	50 mg	0 µL	780 s
4	1 mL	50 mg	100 µL	180 s

Table S1. Clotting time of the GCPP-PDA gel and Ca^{2+} to whole blood.