Supporting Information

Injectable double network hydrogel with hemostasis and antibacterial activity for promoting multidrug-resistant bacteria infected wound healing

Zibo Zhang ^a, Jiadong Guo ^a, Yuxiang He ^a, Jinzhi Han ^a, Mingmao Chen ^{a,b}, Yunquan Zheng ^{b,c}, Shenghang Zhang ^d, Shaobin Guo ^{a,b,*}, Xianai Shi ^{a,b}, Jianmin Yang ^{a,b,*},

^a College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China

^b Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China

^c College of Chemistry, Fuzhou University, No.2 Xueyuan Road, Fuzhou 350108, China

^d Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistic Support Force, PLA, No.156 West Second Ring Road, Fuzhou 350025, China

* Corresponding authors at: College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.

E-mail addresses: sguo@fzu.edu.cn (S. Guo); jmyang@fzu.edu.cn (J. Yang)

Figure S1. The FT-IR spectrum result of ODex and Dex. A new signal at 1734 cm⁻¹ represents the aldehyde group.

Figure S2. ¹H NMR spectrums of ODex, Dex, GelMA, and Gel. Materials were dissolved in D_2O . A peak at 5.65 ppm indicating successful synthesis of ODex. A pair of peaks at 5.3 ppm and 5.6 ppm, indicating that the methacrylic group was successfully grafted onto the gelatin.

Figure S3. Photograph of gelation process. (The total volume of hydrogel precursor solution is 2 mL)

Figure S4. Gelation time of hydrogels with different concentrations of EPL. (The total volume of hydrogel precursor solution is 2 mL)

Figure S5. Pore size distribution of hydrogels. At least 30 pores in each group were calculated. The pore size of the hydrogel gradually decreases with the increase of EPL content.

Incision

Bleeding

Figure S7. Photograph of the hemostatic process of the rat liver. The entire hemostasis time for control group was about 5 min.

Figure S8. Typical images of S.aureus, E.coli, and MRSA colony plate count.

Figure S9. (a) *E. coli*, (b) *S. aureus*, and (c) MRSA viable bacteria count. (d) Typical images of *S.aureus*, *E.coli*, and MRSA colony plate count. Method: 1 mL of the bacterial suspension containing 1×10^6 CFU was seeded to a 24–well plate. Afterward, the bacterial suspension was exposed to UV irradiation with time set as 2 min, 5 min, and 10 min, respectively. After culturing at 37°C for 2 h, the bacterial liquid was collected, and 100 µL of the bacterial liquid was transferred to a 96-well plate. The OD values were measured with a microplate reader (Bio-Rad680, USA). Meanwhile, 20 µL of bacterial suspension was diluted by 1 mL of PBS, and then incubate at 37°C for 12 h.

Figure S10. Different concentrations of GA/ODex/EPL–B destroy (a) *E.coli* biofilm and (b) MRSA biofilm.

Figure S11. Typical photographs of MRSA-infected wound.

Figure S12. Giemsa staining of the infectious wound tissue after 2 days of treatment. Purple color indicates the residual bacteria.